
MICROSOFT
SOFTCARD n

System

Installation and
Operations Manual
and Programmer’s
Manual

For Apple. II, II+,and He

MICROSOFT LICENSE AGREEMENT
CAREFULLY READ ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT PRIOR TO

BREAKING THE DISKETTE SEAL. BREAKING THE DISKETTE SEAL INDICATES YOUR ACCEPTANCE OF
THESE TERMS AND CONDITIONS.

If you do not agree to these terms and conditions, return the unopened diskette package and the
other components of this product to the place of purchase and your money will be refunded. No refunds will
be given for products which have opened diskette packages or missing components.

1. LICENSE: You have the non-exclusive right to use the enclosed program. This program can
only be used on a single computer. You may physically transfer the program from one computer to another
provided that the program is used on only one computer at a time. You may not electronically transfer the
program from one computer to another over a network. You may not distribute copies of the program or
documentation to others. You may not modify or translate the program or related documentation without the
prior written consent of Microsoft.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PROGRAM OR DOCUMENTATION, OR
ANY COPY EXCEPT AS EXPRESSLY PROVIDED IN THIS AGREEMENT.

2. BACK-UP AND TRANSFER: You may make one (1) copy of the program solely for back-up
purposes. You must reproduce and include the copyright notice on the back-up copy. You may transfer
and license the product to another party if the other party agrees to the terms and conditions of this
Agreement and completes and returns a Registration Card to Microsoft. If you transfer the program you must
at the same time transfer the documentation and back-up copy or transfer the documentation and destroy
the back-up copy.

3. COPYRIGHT: The program and its related documentation are copyrighted. You may not copy
the program or its documentation except as for back-up purposes and to load the program into the computer
as part of executing the program. All other copies of the program and its documentation are in violation of this
Ag reement.

4. TERM: This license is effective until terminated. You may terminate it by destroying the
program and documentation and all copies thereof. This license will also terminate if you fail to comply with
any term or condition of this Agreement. You agree upon such termination to destroy all copies of the
program and documentation.

5. HARDWARE COMPONENTS: Microsoft product hardware components only include circuit
cards and the mechanical mouse.

6. LIMITED WARRANTY: THE PROGRAM IS PROVIDED “AS IS’’ WITHOUT WARRANTY OF ANY
KIND. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS ASSUMED BY
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT MICROSOFT OR ITS DEALERS)
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING. REPAIR OR CORRECTION. FURTHER,
MICROSOFT DOES NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE
USE OF, OR THE RESULTS OF THE USE OF, THE PROGRAM IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, CURRENTNESS, OR OTHERWISE; AND YOU RELY ON THE PROGRAM AND RESULTS
SOLELY AT YOUR OWN RISK.

Microsoft does warrant to the original licensee that the diskette(s) on which the program is
recorded be free from defects in materials and workmanship under normal use and service for a period of
ninety (90) days from the date of delivery as evidenced by a copy of your receipt. Microsoft warrants to the
original licensee that the hardware components included in this package are free from defects in materials
and workmanship for a period of one year from the date of delivery to you as evidenced bv a copy of your
receipt. Microsoft’s entire liability and your exclusive remedy shall be replacement of the diskette or
hardware component not meeting Microsoft’s limited warranty and which is returned to Microsoft with a copy
of your receipt. If failure of the diskette or hardware component has resulted from accident, abuse or
misapplication of the product, then Microsoft shall have no responsibility to replace the diskette or hardware
component under this Limited Warranty. In the event of replacement of the hardware component the
replacement will be warranted for the remainder of the original one (1) year period or 30 days, whichever is
longer.

THE ABOVE IS THE ONLY WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE THAT IS MADE BY MICROSOFT ON THIS MICROSOFT PRODUCT. THIS WAR­
RANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY
FROM STATE TO STATE.

NEITHER MICROSOFT NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION,
PRODUCTION, OR DELIVERY OF THIS PROGRAM SHALL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES ARISING OUT OF THE USE, THE RESULTS OF USE, OR
INABILITY TO USE SUCH PRODUCT EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES OR CLAIM. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE ABOVE LIMITATION MAY NOT
APPLY TO YOU.

7. UPDATE POLICY: In order to be able to obtain updates of the program, the licensee and
persons to whom the program is transferred in accordance with this Agreement must complete and return
the attached Registration Card to Microsoft. IF THIS REGISTRATION CARD HAS NOT BEEN RECEIVED BY
MICROSOFT, MICROSOFT IS UNDER NO OBLIGATION TO MAKE AVAILABLE TO YOU ANY UPDATES EVEN
THOUGH YOU HAVE MADE PAYMENT OF THE APPLICABLE UPDATE FEE.

8. MISC.: This license agreement shall be governed by the laws of the State of Washington and
shall inure to the benefit of Microsoft Corporation, its successors, administrators, heirs and assigns.

9. ACKNOWLEDGEMENT: YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE
THAT THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF AGREEMENT BETWEEN
THE PARTIES AND SUPERCEDES ALL PROPOSALS OR PRIOR AGREEMENTS, VERBAL OR WRITTEN,
AND ANY OTHER COMMUNICATIONS BETWEEN THE PARTIES RELATING TO THE SUBJECT MATTER
OF THIS AGREEMENT.

Should you have any questions concerning this Agreement, please contact in writing Microsoft,
Customer Sales and Service, 10700 Northup Way, Bellevue, WA 98004.

Microsoft is a registered trademark and SoftCard and RAMCard are trademarks of Microsoft
Corporation.

Microsoft.
SoftCard.II
for Apple®][,][Plus, and //e Computers

Installation and Operation Manual

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corpora­
tion. The software described in this document is furnished under a
license agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement. It
is against the law to copy any part of the software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser’s
personal use.

© Microsoft Corporation, 1983, 1984

If you have comments about this documentation or the enclosed soft­
ware, complete the Software Problem Report at the back of this man­
ual and return it to Microsoft.

Microsoft and the Microsoft logo are registered trademarks of Microsoft
Corporation.
SoftCard is a trademark of Microsoft Corporation.
Apple, the Apple logo, Silentype, and Applesoft are registered trademarks of
Apple Computer, Inc.
CP/M is a registered trademark of Digital Research, Inc.
Intel is a registered trademark of Intel Corporation.
Z80 is a registered trademark of Zilog, Inc.
Osborne is a registered trademark of Osborne Computer Corporation.
Videx and Videoterm are trademarks of Videx, Inc.
Hazeltine is a trademark of Hazeltine Corporation.
IQ is a trademark of Soroc Technology, Inc.
California Computer Systems is a registered trademark and 7710A is a trade­
mark of California Computer Systems, Inc.

Part No. 028-023-006
Document No. 8820-22X-00

Preface

Your Microsoft® SoftCard™ II system is a valuable addition to
your Apple®][,][Plus, or //e computer. It is your key to running
the many programs and languages available under the CP/M®
operating system. The SoftCard II system is easy to install and
use. In addition to the standard CP/M utility programs, it
includes several utility programs written by Microsoft and the
Microsoft BASIC Interpreter, so you can create your own
programs.

Important
Before you break the seal on the disk envelope, you must
read the Microsoft License Agreement in the Customer
Service Plan booklet. Also before you break the seal on the
disk envelope, read the Digital Research License Agree­
ment included with your Customer Service Plan booklet.
If you agree with the terms of the agreement, fill out the
Microsoft Product Registration Card and mail it to Micro­
soft immediately.

About the Microsoft SoftCard Manuals

The SoftCard system is documented in four manuals: the
Microsoft SoftCard II Installation and Operation Manual, the
Microsoft BASIC Interpreter Reference Manual, the Osborne®
CP/M User Guide, and the Microsoft SoftCard IIProgrammer’s
Manual.

The Microsoft SoftCard IIInstallation and Operation Manual
introduces the SoftCard II package. It also describes how to
install the SoftCard II circuit board, how to load and use the
CP/M operating system, and how to use CP/M built-in com­
mands and certain transient programs. It should be read before
installing the SoftCard II circuit board and the software.

• • •
111

Preface

For programmers who want to connect nonstandard I/O de­
vices or use software requiring modifications to CP/M, the
SoftCard IIProgrammer’s Manual contains the necessary infor­
mation. It is also a reference manual for utility programs,
commands, and CP/M system calls. This manual can be ob­
tained from Microsoft by sending in your Microsoft Product
Registration card.

The Microsoft BASIC Interpreter Reference Manual explains
how to use Microsoft BASIC and provides a reference for all of
the commands, statements, and functions contained in Micro­
soft BASIC. This manual is intended for users who already
know how to program in BASIC. If you are new to BASIC, see
the list of recommended reading for more information about
programming in BASIC.

If you are new to the CP/M operating system, the Osborne
CP/M User Guide will teach you how to use the CP/M built-in
commands and transient programs. It will guide you step-by-
step through the different functions of CP/M.

How to Use This Manual

This is your SoftCard II system owner’s manual; it shows you
how to install and operate your SoftCard II system. It is organ­
ized so you can find the information you want quickly and
easily.

The chapters are organized as follows:

Chapter 1, “Introduction,” introduces the SoftCard II system
and lists the syntax notation used in SoftCard II documen­
tation.

Chapter 2, “Installation,” describes what is needed to install
the SoftCard II circuit board and how to do it. This chapter
also tells you what other accessory boards are compatible with
the SoftCard II.

iv

Preface

Chapter 3, “Getting Started,” tells you how to load CP/M and
lists the procedures for making backup copies of your SoftCard
II Master disk.

Chapter 4, “An Introduction to CP/M,” introduces the CP/M
operating system and describes the role of an operating system
within the computer.

Chapter 5, “Using CP/M With the Apple Computer,” describes
how CP/M works with the Apple //e computer. Includes de­
scriptions of the special features of the SoftCard II system.

Chapter6, “CP/M Commands and Utility Programs,” explains
how to use CP/M commands and describes the transient pro­
grams you will use most often.

Digital Research
License Information

Our license with Digital Research for the CP/M operating
system requires that each purchaser of the SoftCard with
CP/M register with Microsoft Corporation so that records can
be maintained of all CP/M owners. This requirement is made
by Digital Research, not by Microsoft. A post card is enclosed
for reply. The serial number on the card is the number stamped
on the disk labels. Before signing the card and returning it to
Microsoft, read the software license agreement below carefully.

Software License Agreement
Important: All Digital Research programs are sold only on the
condition that the purchaser agrees to the following license.
READ THIS LICENSE CAREFULLY. If you do not agree to
the terms contained in this license, return the packaged disk
UNOPENED to your distributor and your purchase price will
be refunded. If you agree to the terms contained in this license,
fill out the REGISTRATION information and RETURN by
mail to MICROSOFT CORPORATION.

DIGITAL RESEARCH agrees to grant and the Customer
agrees to accept on the following terms and conditions non-
transferable and nonexclusive licenses to use the software
program(s) (Licensed Programs) herein delivered with this
agreement.

Term

This agreement is effective from the date of receipt of the
above-referenced program(s) and shall remain in force until
terminated by the Customer upon one month’s prior written
notice, or by Digital Research, as provided below.

vn

License Information

Any license under this Agreement may be discontinued by the
Customer at any time upon one month’s prior written notice.
Digital Research may discontinue any license or terminate
this Agreement if the Customer fails to comply with any of the
terms and conditions of this Agreement.

License

Each program license granted under this Agreement author­
izes the Customer to use the Licensed Program in any machine
readable form on any single computer system (referred to as
System). A separate license is required for each System on
which the Licensed Program will be used.

This Agreement and any of the licenses, programs, or mate­
rials to which it applies may not be assigned, sublicensed or
otherwise transferred by the Customer without prior written
consent from Digital Research. No right to print or copy, in
whole or in part, the Licensed Programs is granted except as
hereinafter expressly provided.

Permission to Copy or Modify Licensed Programs

The Customer shall not copy, in whole or part, any Licensed
Programs which are provided by Digital Research in printed
form under this Agreement. Additional copies of printed mate­
rials may be acquired from Digital Research.

Any Licensed Programs which are provided by Digital Re­
search in machine readable form may be copied, in whole or in
part, in printed or machine readable form in sufficient number
for use by the Customer with the designated System, to under­
stand the contents of such machine readable material, to mod­
ify the Licensed Program as provided below, for back-up pur­
poses, provided, however, that no more than five (5) printed
cpies will be in existence under any license at any one time
without prior written consent from Digital Research. The Cus­
tomer agrees to maintain appropriate records of the number
and location of all such copies of Licensed Programs. The
original, and any copies of the Licensed Programs, in whole or
in part, which are made by the Customer shall be the property
of Digital Research.

vin

License Information

This does not imply, of course, that Digital Research owns the
media on which the Licensed Programs are recorded. The Cus­
tomer may modify any machine readable form of the Li­
censed Programs for his own use and merge it into other
program material to form an updated work, provided that,
upon discontinuance of the license for such Licensed Program,
the Licensed Program supplied by Digital Research will be
completely removed from the updated work. Any portion of the
Licensed Program included in an updated work shall be used
only if on the designated System and shall remain subject to
other terms of this Agreement.

The Customer agrees to reproduce and include the copyright
notice of Digital Research on all copies, in whole or in part, in
any form, including partial copies of modifications, of Li­
censed Programs made hereunder.

Protections and Security

The Customer agrees not to provide or otherwise make avail­
able any Licensed Program including but not limited to pro­
gram listings, object code, and source code, in any form, to any
person other than Customer or Digital Research employees,
without prior written consent from Digital Research, except
with the Customer’s permission for purposes specifically re­
lated to the Customer’s use of the Licensed Program.

Discontinuance

Within one month after the date of discontinuance of any
license under this Agreement, the Customer will furnish Dig­
ital Research a certificate certifying that through his best
effort, and to the best of his knowledge, the original and all
copies, in whole or in part, in any form, including partial copies
in modifications, of the Licensed Program received from Dig­
ital Research or made in connection with such have been de­
stroyed, except upon written authorization from Digital Re­
search, the Customer may retain a copy for archive purposes.

License Information

Disclaimer of Warranty

Digital Research makes no warranties with respect to the
Licensed Programs. The sole obligation of Digital Research
shall be to make available all published modifications or up­
dates made by Digital Research to Licensed Programs which
are published within one (1) year from date of purchase, pro­
vided Customer has returned the Registration Card delivered
with the Licensed Program.

Limitation of Liability

THE FOREGOING WARRANTY IS IN LIEU OF ALL
OTHER WARRANTIES, EXPRESSED OR IMPLIED, IN­
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR­
RANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. IN NO EVENT WILL DIG­
ITAL RESEARCH BE LIABLE FOR CONSEQUENTIAL
DAMAGES EVEN IF DIGITAL RESEARCH HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

General

If any of the provisions, or portions thereof, of this Agreement
are invalid under any applicable statute or rule of law, they are
to that extent to be deemed omitted.

x

Contents

Preface iii

About the Microsoft SoftCard Manuals iii
How to Use This Manual iv

Digital Research License Information vii

1 Introduction 1

Hardware 3
Software 4
Command Line Notation 6

2 Installation 9

Preliminary Information
Circuit Board Installation

11
Procedure 18

3 Getting Started 23

Loading CP/M 25
Backing Up the SoftCard Master Disk
I/O Configuration 32

28

4 An Introduction to CP/M 35

Components of a Computer System 37
CP/M 41

xi

Contents

5 Using CP/M With the Apple Computer 63

CP/M and the Apple][65
Using the Apple Ite Keyboard With CP/M 66
Using I/O Devices With CP/M 69
Print Operations 70
Running Application Programs 71

6 CP/M Commands and Utility Programs 73

Command and Program Execution 76
Built-in Commands 78
Utility Programs 86

Index 113

xn

Chapter 1
Introduction

Hardware 3
Software 4

CP/M Operating System and Programs 4
Microsoft BASIC Interpreter 5
SoftCard II Utility Programs 5

Command Line Notation 6

i

Introduction

The Microsoft SoftCard II system is a hardware and software
product that greatly enhances the capabilities of your Apple It
or //e computer. SoftCard hardware adapts your computer for
the CP/M operating system, which comes with the SoftCard.
In addition, the SoftCard II package includes an extra 64K
bytes of memory, CP/M utility programs, and Microsoft BASIC
Interpreter.

Hardware

The circuit board that you receive in your SoftCard II package
is actually three circuit boards in one. It combines the func­
tions of a Z80r coprocessor board and a 64K memory expan­
sion board.

The combination of two functions on one circuit board saves the
remaining accessory slots in the Apple computer for other
purposes.

The coprocessor section of the SoftCard II circuit board con­
tains a Z80 microprocessor with the interface circuitry neces­
sary for communicating with the Apple I/O bus. A coprocessor
is an additional microprocessor which shares control of the
computer. Thus, when you install the SoftCard II system into
your Apple, you are really creating two computers from one: a
6502 computer that will run Apple DOS programs, and a Z80
computer that will run CP/M programs.

The memory section of the SoftCard II circuit board contains
64K bytes of RAM (Random Access Memory) for use by the
Z80 microprocessor. The memory section permits large applica­
tion programs (up to 59K bytes) to run under CP/M.

3

SoftCard II

Once the SoftCard II circuit board has been installed, you can
operate your Apple computer in either 6502 mode (using the
6502 microprocessor) or CP/M mode (using the Z80 micropro­
cessor). When you are in 6502 mode, the SoftCard will not
affect the operation of your Apple. In CP/M mode, you can run
any CP/M-based program or language, including the Micro­
soft BASIC Interpreter.

Software

The SoftCard II package includes the CP/M operating system
(CP/M-80); the Microsoft BASIC Interpreter; and special tran­
sient programs to perform utility functions, such as copying
disks and modifying CP/M to your particular system environ­
ment.

CP/M Operating System and Programs
The CP/M operating system is one of the most widely imple­
mented 8-bit operating systems in use today. Because of its
widespread use, an extensive library of high-level languages
and application software is available for CP/M-based com­
puters.

4

Introduction

In addition to supporting a wide variety of software, CP/M
offers many convenient features. These include the capability
of implementing machine-language programs; faster disk I/O
access; simple file transfer operations; and “wild card” file
naming conventions that allow you to refer to multiple files
with one name. The SoftCard version of CP/M also includes
several programming tools for program development and util­
ity programs for everyday operation.

Microsoft BASIC Interpreter
The Microsoft BASIC Interpreter is the most widely imple­
mented BASIC in use today. In addition to the standard BASIC
commands and statements, the SoftCard version of BASIC
includes high-resolution graphics commands and statements.
The Microsoft BASIC Interpreter Reference Manual describes
how to use Microsoft BASIC.

SoftCard II Utility Programs
Utility programs perform certain time-consuming tasks, such
as disk formatting and file transfer. In addition to the CP/M
utility programs PIP and STAT, the SoftCard II system in­
cludes programs that allow you to:

Copy Apple DOS files to your CP/M disk with the APDOS
program.

Create startup disks with the AUTORUN program.

Display an alphabetical list of disk files and other infor­
mation with the CAT program.

Configure CP/M for specific I/O devices and programs
with the CONFIGIO program.

Format and copy disks with the COPY program.

Copy files in a single-drive system with the MFT program.

Several other utility programs and programming tools are also
included. These are listed in Chapter 6, “CP/M Commands
and Utility Programs.”

5

SoftCard II

Command Line Notation

Before you can use the computer, you must learn how to com­
municate with it. Communication is more than just typing
words on the keyboard. Instructions to the computer must be in
a certain format to ensure the computer understands exactly
what you want it to do.

Most instructions to the computer are in the form of commands.
Commands often consist of a keyword and command line. The
keyword is usually the name of the command that you want to
execute, such as COPY. The command line that follows the
keyword specifies what the command must do. For example,

COPY B:=A:

instructs the COPY program to copy the contents of the disk in
drive A: to the disk in drive B:. Without the command line,
COPY would not know what to copy.

In the SoftCard II documentation, special notation has been
developed to show the differences between what you enter on
the keyboard and what you see in the manual. The following
notation is used in this manual to help you understand how
commands are entered into the computer.

ital Italics indicate information that you enter. Ital­
icized lowercase text is for an entry that you
must supply, such as a filename.

Square brackets indicate that the enclosed en­
try is optional. In the “Examples,” the /F and
/V entries can be included at your discretion.
They are not necessary to execute the command.

6

Introduction

Braces indicate a choice between two or more
entries. At least one of the entries enclosed in
braces must be chosen, unless the entries are
also enclosed in square brackets. In the COPY
example, you must type either the /S or the /D
entry in the command line.

Vertical bars separate choices within braces.

Ellipses indicate that an entry can be repeated
as many times as needed or desired. In the
following MFT example, the ellipses indicate
that you can include additional files in the
command line.

CAPS Capital letters not enclosed in the other ele­
ments of syntax indicate portions of commands
that must be entered exactly as shown, such as
command keywords. Small capital letters indi­
cate that you must press a key named by the
text; for example, “press the RETURN key.”

All other punctuation, such as commas, colons, slash
marks, and equal signs, must be entered exactly as shown.
In the COPY example, the / character must be included
with the entry. Unless specified in the description of the
command, spaces are optional. Spaces are usually shown
in the documentation for clarity.

7

SoftCard II

Examples

Command Line

COPY d: {/S|/D} [/F] [/V]
L_ These two entries are optional. They

should be typed as shown.

You must type either the /S or the /D
entry.

_______________ The lowercase italic d: means you
must supply the disk drive identifier
(A: through D:).

Capital letters indicate that the word
must be entered exactly as shown.

MFT filel [file 2,...]

Ellipses indicate that you can enter
additional arguments.

8

Chapter 2
Installation

Preliminary Information 11
System Requirements 11
Unpacking 12
Safety and Handling Precautions 13
Other Accessory Boards 14

Circuit Board Installation Procedure 18

9

Installation

This chapter gives instructions for installing the SoftCard II
circuit board. It also provides other information about setting
up your SoftCard II system. We recommend reading this entire
chapter before installing the SoftCard II circuit board.

Preliminary Information

Before installing the circuit board, make sure that your system
meets all the criteria listed in the following “System Require­
ments” section and that your Apple computer is set up and
operational as described in your Apple owner’s guide.

System Requirements
To use your SoftCard II system successfully, you will need the
following items:

1. An Apple][or //e computer with 64K of memory and
80-column display capability. For Apple 11 and 11 Plus com­
puters, you also need an 80-column video display board.

2. A SoftCard II printed circuit board.

3. Disk drives—only one drive is needed, but two drives are
recommended.

4. A screen monitor or an external terminal.

5. The SoftCard II CP/M Master disk.

6. At least three blank floppy disks.

11

SoftCard II

Unpacking
Upon receipt of your SoftCard II package, check carefully for
missing items or shipping damage. If any of the following
items are damaged or missing, contact your computer dealer.

Your SoftCard II system should consist of the following:

The SoftCard II printed circuit board

The SoftCard II Master floppy disk, which includes the
CP/M operating system and the following files:

APDOS.COM
ASM.COM
AUTORUN.COM
BOOT.COM
CAT.COM
CONFIGIO.BAS
COPY.COM

DDT.COM
DUMP.COM
DUMP.ASM
ED.COM
GBASIC.COM
LOAD.COM

MFT.COM
PATCH.COM
PIP.COM
STAT.COM
SUBMIT.COM
XSUB.COM

The Osborne CP/M User Guide

A green Microsoft binder containing the following man­
uals:

Microsoft SoftCard II Installation and Operation
Manual

Microsoft SoftCard II Programmer’s Manual

Microsoft BASIC Interpreter Reference Manual

A Customer Service Plan

Disk drive labels

If reshipment of the SoftCard II system is necessary, contact
Microsoft Corporation prior to returning the circuit board.

12

APDOS.COM
ASM.COM
AUTORUN.COM
BOOT.COM
CAT.COM
COPY.COM
DDT.COM
DUMP.COM
ED.COM
GBASIC.COM
LOAD.COM
MFT.COM
PATCH.COM
PIP.COM
STAT.COM
SUBMIT.COM
XSUB.COM

Installation

Safety and Handling Precautions
The following paragraphs contain some common-sense pre­
cautions you should be aware of before attempting installation.

Safety Precautions

Before installing the SoftCard II (or any other circuit board),
you should know about the possible shock hazards that are
present in any electronic device, including a personal computer.
Although the Apple computer is designed to minimize the dan­
ger of electrical shock, it is prudent to exercise caution when­
ever the cover has been removed from the computer.

It is dangerous to open any electrical or electronic device while
the power is on. Attempts to insert or remove circuit boards
while power is on will usually result in damage to the board
and to the computer. Use standard electrical safety precau­
tions whenever the cover is off the computer.

Handling Precautions

The SoftCard II circuit board contains integrated circuits
(called “ICs” or “chips”) which can be damaged by electro­
static discharge during handling. “Handling” is defined as
physically holding or moving the circuit board outside the
computer. The only time you should be handling the circuit
board is when you are installing it.

To decrease the chance of damaging the circuit board (and
possibly voiding the warranty), follow these simple guidelines
when handling the SoftCard II or any other circuit board.

1. Discharge any personal static electricity before handling
accessory boards by touching the metal power supply
chassis.

Make sure that the power is turned off and the power cord
is disconnected before touching the power supply.

13

SoftCard II

2. Hold the circuit board by its edges to avoid contaminat­
ing it with oil from your hands. Be especially careful to
avoid touching the gold edge-connector on the bottom of
the board.

3. When handling circuit boards or ICs, avoid any contact
with plastic, vinyl, and styrofoam. These substances can
cause electrostatic buildup.

4. If you need to remove or replace ICs, keep handling to a
minimum. Take the ICs from their containers only when
necessary. Always use anti-static containers for storage.
Also, always handle ICs by the casing instead of by the
connector pins. This will minimize the electrostatic shock
danger and will prevent possible damage to the pins.

Other Accessory Boards
The CP/M operating system requires accessory boards be in­
stalled into specific slots, depending on their intended use. For
example, if you have a printer interface board, it should be
installed in slot 1. This allows you to refer to the printer with­
out specifying a slot number, as is necessary with Applesoft
BASIC and Integer BASIC. The accessory slots are numbered
from 1 through 7, as shown in Figure 2.1. (Slots are numbered 0
through 7 in the Apple K and][Plus computers.) To determine
the correct slot for using other accessory boards with CP/M,
read the following paragraphs.

Note
The accessory slot assignments for CP/M are exactly the
same as those for Apple Pascal. Therefore, if you have
your system configured for use with Apple Pascal, no
rearrangement is necessary.

14

Installation

Figure 2.1. Apple //e Accessory Slots

15

SoftCard II

Compatible Accessory Boards

Table 2.1 lists the accessory boards that are directly compat­
ible with the SoftCard II system and CP/M. These boards,
when installed in the appropriate Apple accessory slots, will
work without any software modifications. (An underlined “x”
indicates the recommended slot for installation.)

* The CCS 7710A Serial Interface is the preferred interface board for serial
communications. It supports standard communication protocols and varia­
ble baud rates from 110 to 19200 baud.

Table 2.1
Compatible Accessory Boards

Accessory Board

Assigned Slot

0 1 2 3 4 5 6 7

Softcard II X X X X X

Apple Disk If Controller X X

Apple Communications Interface X X X X

California Computer Systems r (CCS)
7710A™ Serial Interface* X X X X X

Apple High Speed Serial Interface X X X X X

Apple Silentype« Printer Interface X X X X X

Apple Parallel Printer Card X X X

Apple Firmware Card X X X X X

Apple Super Serial Interface X X X X X

Microsoft RAMCard (or other memory
expansion boards for Apple If or If Plus
computers) X

There are some accessory boards not listed in Table 2.1 that are
compatible with CP/M. As a general rule, any accessory board
or I/O device that is directly compatible with the Apple Pascal
operating system without requiring any software modifica­
tions will be compatible with CP/M as well. Other accessory
boards or I/O devices can be used if the software supplied by
the board manufacturer can be configured to your CP/M sys­
tem with the CONFIGIO program. Instructions on how to use
CONFIGIO are given in Chapter 6 of the SoftCard II Pro­
grammer’s Manual.

16

Installation

Apple Disk Controller Boards

The SoftCard II version of CP/M communicates with a maxi­
mum of four disk drives. (Two disk drives can be connected to
each Apple Disk][Controller board.) As indicated in Table 2.1,
Apple Disk][Controller boards can be installed in slots 5 and 6.
The first controller board must be installed in slot 6 and the
second in slot 5.

Apple disk drives are designated with numbers. The first drive
is drive 1, the second drive is drive 2, and so on. CP/M uses
letters followed by a colon to identify the disk drive. The first
drive (connected to the disk controller in slot 6) is always
assigned as drive A:. Each sequential drive is assigned the
next successive letter. For example, drive 2 is drive B:, and
drive 3 (connected to the disk controller in slot 5) is drive C:.

General Purpose I/O Accessory Boards

Accessory boards for general purpose I/O devices (such as
modems, paper-tape readers, and punches) must be installed in
slot 2. Any board that is compatible with Apple Pascal or has
accompanying interface software (from the board’s manufac­
turer) is compatible with CP/M.

External Terminals

If you are using an external terminal and want to use CP/M,
we recommend you use either a CCS 7710A Serial Interface
board or a modified Apple Communications Interface board to
connect the terminal to your SoftCard II system. The Apple
High Speed Serial Interface board is compatible but is not
recommended, since there is no way for CP/M to check the
“status” of this device. The preferred accessory slot for the
external interface board is slot 3.

17

SoftCard II

Important
Before using an external terminal with CP/M, certain
portions of CP/M must be modified with the CONFIGIO
program. Do not install any circuit board into slot 3 until
the I/O configuration process is completed. Once CP/M is
set up for the external terminal, you may then install the
interface board.

Circuit Board Installation Procedure

Use the following procedure to install the SoftCard II circuit
board. We recommend that you first read all the instructions to
acquaint yourself with the overall procedure. Then perform
each step with care exactly as described.

The SoftCard can be installed in slots 1 through slot 7. Because
CP/M does not use the slot for a specific purpose, we recom­
mend installing the SoftCard in slot 4.

1. Set the Apple POWER switch to OFF (see Figure 2.2).

monitor jack switch

Figure 2.2. Apple Rear Panel

2. Set all connected accessory external power switches to
OFF (display monitor, printer, and other external de­
vices).

18

Installation

3. Ensure that there is nothing on the top cover of the com­
puter.

4. Position your Apple computer with the keyboard directly
in front of you, then remove the top cover, as shown in
Figure 2.3.

Figure 2.3. Top Cover Removal

5. Slide the cover back and remove it from the computer.
Once the cover has been removed, place it somewhere out
of your way.

19

SoftCard II

6. Using Figure 2.4 as a guide, locate accessory slot 4.

Figure 2.4. Accessory Slot 4

7. Remove the SoftCard II circuit board from its container.

8. Align the SoftCard II circuit board in the accessory slot
so that the edge-connector is directly over the connector in
the slot. The component side should face the right side of
the chassis. Use Figure 2.5 as a guide.

9. Press the circuit board down into the connector using
steady but firm pressure. Make certain that the SoftCard
circuit board is level and not tilted down toward the front
of the Apple.

10. Refer to Table 2.1 for the correct installation configura­
tion of your other accessory boards. See Figure 2.1 for
accessory slot locations. If you have any other accessory
boards to install, do it now.

20

Installation

Figure 2.5. Installation of SoftCard II

11. Carefully place the top cover back on the computer.

12. Slide the forward edge of the cover under the forward lip
of the chassis, as shown in Figure 2.6.

Figure 2.6. Top Cover Replacement

21

SoftCard II

13. Press the rear portion of the cover down until the corners
pop back into place.

14. Turn all other external device power switches (printer,
monitor, etc.) to ON.

This completes the circuit board installation procedure. Since
CP/M uses letters to identify disk drives, we recommend apply­
ing the labels from the SoftCard II carton to the front of each
disk drive, as indicated:

Drive 1 is labeled drive A:

Drive 2 is labeled drive B:

and so on. Each successive drive is labeled with the next letter.

The hardware of your SoftCard II system is now ready to use.
The next step is to “install” the software and start using your
SoftCard II system. The next chapter will show you how.

22

Chapter 3
Getting Started

Loading CP/M 25
Backing Up the SoftCard Master Disk 28

Making Backup Copies
With a Single-Drive System 29
Making Backup Copies
With a Multiple-Drive System 31

1/O Configuration 32

23

Getting Started

Before using a CP/M program, three steps must be taken.
These are:

Loading the CP/M operating system into memory

Making backup copies of your SoftCard Master disk

Making any adjustments to CP/M required by your pro­
gram or an I/O device

This chapter will tell you how to do the first two steps and refers
you to the appropriate section for the last step. If you are new to
CP/M, you should read this chapter completely before using
CP/M.

Loading CP/M

CP/M is loaded into memory by inserting the SoftCard II
Master disk into disk drive A: and setting the POWER switch
to ON. (CP/M disks are inserted into the Apple disk drives the
same way Apple DOS disks are inserted. That is, the disk label
faces up and the write-protect notch is on the left.) When you
turn on the power, CP/M is automatically loaded into memory.
(This process is known as “booting.”)

25

SoftCard II

After a few seconds, the screen displays:

SoftCard II CP/M
64K Version x.xx

(c) 1984 Microsoft Corporation

SoftCard is a trademark of Microsoft Corporation.
CP/M is a registered trademark of Digital Research, Inc.

For Apple //e computers, there is a second method you can use
if the power is already turned on. If you have an Apple disk in
disk drive A:, remove it and insert the SoftCard Master disk.
Then, while holding down the OPEN-APPLE and CONTROL keys,
press the RESET key. As in the first method, this will load and
run CP/M. The screen display will be the same.

The A> on your display is a prompt indicating that CP/M is
ready to accept a command.

As noted in the previous chapter, CP/M uses letters to identify
disk drives. The A> indicates that all disk operations will be
performed from drive A:, unless you command otherwise. (See
the “d:” command in Chapter 6.)

26

Getting Started

To see if CP/M is operational, type

CAT

and press the RETURN key. The CAT command is similar to the
Apple DOS CATALOG command, but returns slightly differ­
ent results. You will see the following display:

Total of 88K bytes in 19 files, 38K bytes available

APDOS .COM 2K | CONFIGIO BAS 7K I ED COM 7K PIP COM 8K
ASM COM 8K | COPY COM 2K | GBASIC COM 26K STAT COM 6K
AUTORUN COM 1K DDT .COM 5K LOAD COM 2K SUBMIT COM 2K
BOOT COM 1K DUMP COM 5K | MFT COM 2K XSUB COM 1K
CAT COM 1K DUMP ASM 1K PATCH COM 1K

When you typed CAT and pressed RETURN, the two actions
instructed the CP/M operating system (which is now in the
Apple He’s memory) to find the program CAT on the disk drive
and execute the instructions contained within. By doing this,
you effectively tested the different software modules of CP/M
and the transient program CAT. CAT also shows you the files
you have on disk, how much memory space you have left on
your SoftCard II Master disk, and the size of each of the files.
Check what you see on the screen with the display above; they
should match.

When you have verified that your SoftCard Master disk has the
same files as shown in the display, the next step is to make
backup copies of your SoftCard Master disk.

27

SoftCard II

Backing Up the SoftCard Master Disk

A “backup copy” is a duplicate copy of a program or set of
programs, usually on a floppy disk or magnetic tape. Making
backup copies is a good programming practice that ensures
that you will always have a copy of your software in case the
original copy is damaged or erased, or just wears out.

Making a backup copy also permits you to modify CP/M for
different software and I/O configurations. You should always
work with the backup copy and never with the SoftCard Mas­
ter disk.

Making backup copies of your SoftCard II Master disk is a
simple, one-step process with the SoftCard COPY program.
(The COPY program is fully documented in Chapter 6 of this
manual.) When you have made backup copies, store the Soft-
Card Master disk in a safe, dry place away from magnetic
interference.

Use the procedure designed for your system configuration
(single-drive or multiple-drive) to make backup copies of the
SoftCard Master disk. Both procedures assume that CP/M has
been loaded into memory and that the A> prompt is on the
screen.

Note
If you make a mistake when typing a command, use the *-
(left-arrow) key to backspace and correct it. A description
of CP/M line editing commands can be found in Chapter 5
of this manual.

28

Getting Started

Making Backup Copies With a Single-Drive System
For single-drive systems, use the following procedure to make
a backup copy of your SoftCard II Master disk. The COPY
program will format the backup disk as it copies it.

1. Insert the SoftCard Master disk in drive A:, type

COPY A:=A:

and press the RETURN key. After a few seconds, the screen
displays:

Leave the SoftCard Master disk in drive A: and press the
RETURN key. The program will then copy a portion of the
SoftCard Master disk. The COPY program responds by
displaying:

Insert DESTINATION disk and press RETURN

29

SoftCard II

3. Remove the SoftCard II Master disk and insert a blank
disk into drive A:. Then press the RETURN key.

Note
For single-drive systems, all data copied from the
source disk to the destination disk must be held in
memory while you change disks. Because the Apple
//e memory is smaller than the amount of data to be
copied, only part of the data can be copied at a time.

When the program has written a portion of the disk into
memory, it prompts you with:

Insert SOURCE disk and press RETURN

Remove the destination disk (the disk you just copied
data to) and insert the SoftCard Master disk back into
the disk drive. Press the RETURN key. This process will be
repeated several times until the entire disk has been
copied. When the copy process is complete, the screen
displays:

Operation completed

Do you wish to repeat this operation?

4. You now have a backup copy of your SoftCard Master
disk. To make additional copies , press the Y key. If you do
not want to make another copy, press the N key. The
screen displays:

Insert CP/M system disk into drive A:

Press RETURN

Since you already have a copy of your SoftCard Master
disk in the drive, simply press the RETURN key. This will
return you to CP/M command level, and you will see the
A> prompt.

30

Getting Started

Making Backup Copies
With a Multiple-Drive System

For multiple-drive systems, use the following procedure to
make a backup copy of your SoftCard II Master disk. The
COPY program will format the backup disk as it copies.

1. Insert your SoftCard II Master disk into drive A: and type

COPY B:=A:

and then press the RETURN key. After a few seconds, the
screen displays:

31

SoftCard II

2. Insert a blank disk into drive B:. Press the RETURN key to
start the copy process.

When the copy process is complete, the screen will display
the message:

Operation completed

Do you wish to repeat this operation?

3. You now have a backup copy of your SoftCard Master
disk. If you want to make another copy, press the Y key
and follow the instructions given on the screen.

When you have finished copying disks, press the N key.
The program responds with:

Insert CP/M system disk into drive A:

Press RETURN

Remove the SoftCard Master disk and store it in a safe,
dry place away from magnetic interference.

4. Remove the backup copy you have just made from drive
B: and insert it into drive A:. Press the RETURN key to exit
to CP/M command level.

I/O Configuration

If you are using nonstandard I/O devices, the final step in
getting started with CP/M is modifying the I/O portion of
CP/M. (See “Compatible Accessory Boards” in Chapter 2 for
information on nonstandard devices.) If you are using stand­
ard devices, you can start using your SoftCard II system now.

The CP/M operating system in your SoftCard II package is
configured internally to work with most standard Apple][and
//e accessories. However, you may have to modify the I/O
portion of CP/M to accommodate some of the accessories that

32

Getting Started

are not directly compatible with CP/M. This is particularly
true if you are using:

An external terminal

An 80-column video display board for different character
fonts on the screen

Nonstandard I/O “driver” software

A modem for telecommunications

A different disk drive system, such as a “hard disk”

Read the manufacturer’s manual for instructions on how to use
I/O device software with your CP/M system. If there are no
instructions, contact your dealer.

Most of the modifications to CP/M can be made with the
CONFIGIO program. For more information, read the follow­
ing sections:

To use an external terminal or an 80-column video display
board with your system, read the “Screen Function Inter­
face” section in Chapter 6 of the SoftCard II Programmer’s
Manual.

If your terminal requires additional software to run with
CP/M, read “Nonstandard I/O Devices and User Soft­
ware” in Chapter 6 of the SoftCard II Programmer’s
Manual.

To add additional I/O software, read “Nonstandard I/O
Devices and User Software” in Chapter 6 of the SoftCard
II Programmer’s Manual.

To use a different disk drive system with your Apple
(other than the Disk][drives), you will probably need
additional software. The manufacturer of the disk drive
system will usually provide explicit instructions for modi­
fying CP/M for the disk drive system. Check with your
computer dealer before installing non-Apple disk drives
into your system.

33

Chapter 4
An Introduction to CP/M

Components of a Computer System 37
Hardware 38
Software 39
The Role of an Operating System 40

CP/M 41
SoftCard, CP/M, and the Apple Computer 41
CP/M Bootstrap Loader 42
How CP/M Uses Memory 45
I/O Communication 48
CP/M Disk Drive System 51
CP/M Disk Files 54
Built-in Commands 58
CP/M Transient Programs 59

35

An Introduction to CP/M

This chapter explains in general terms how the CP/M operat­
ing system works with your Apple][,][Plus, or //e computer.
Reading this chapter is not necessary for running application
programs, but it is recommended for a better understanding of
how the components of a computer system work together. If
you are new to CP/M, we recommend you read the Osborne
CP/M User Guide after completing this chapter.

Components of a Computer System

In order to understand how CP/M works, it is necessary to
understand how computers work in general. This section de­
scribes the different components of a computer system and ex­
plains how they work together.

Computers are used for a wide variety of purposes, from scien­
tific and business applications to home entertainment. All
applications, regardless of their purpose, perform one common
function: processing data (information) for a desired end result.
For example, a business program may process the figures that
are part of a debit account and return those figures in an
accounts receivable format. A game, on the other hand, may
take the data supplied by your hand movements (through a
game-controller) and process that data to move a figure on the
screen. To accomplish either goal, the computer processes the
data through the various components that comprise the com­
puter system.

A computer system has many components that are divided into
two general categories: hardware and software. Both are neces­
sary to process data.

37

SoftCard II

Hardware
Hardware is the term that is applied to the physical compo­
nents of the computer system—the keyboard, screen monitor,
accessory boards, and I/O devices (printers, disk drives, and
so on). The most important hardware components are the CPU,
memory, and the input/output interface.

The CPU (central processing unit) is a device called a micro­
processor. A microprocessor is an integrated circuit (also called
an IC or “chip”) that performs the actual processing of data
(“computing”) by executing instructions stored in the comput­
er’s memory.

There are many types of microprocessors, and they vary in
how much data they can process and how fast they can pro­
cess it. The Apple computer uses the 6502 microprocessor as
its CPU. Other microprocessors include the Zilog Z80 and the
Intel« 8080. Each of these microprocessors has its own instruc­
tion set, which is simply the total repertoire of commands that
the CPU will recognize and execute.

The second major component of a computer is memory. Memory
is where programs and data are stored. The Apple uses two
types of memory: internal memory for storing programs and
data for immediate execution; and mass external storage (usu­
ally a disk drive) for storing files and large amounts of data
that are not needed by the computer for immediate execution.

Internal memory is either RAM (random access memory) or
ROM (read only memory). RAM is used when data or pro­
grams must be stored and revised easily. It is usually the
largest portion of the internal memory in a typical computer.
ROM, on the other hand, is used for short programs which are
never revised at all, such as a bootstrap loader (also called a
boot program). A bootstrap loader is an initializing program
which loads other programs into memory. It is executed from
ROM when power to the computer is turned on.

38

An Introduction to CP/M

The third major hardware component of the computer is a set
of circuits collectively known as the input/output (I/O) inter­
face. The I/O interface includes the I/O Bus (the circuit paths
between the CPU and the accessory slots) and any interface
printed circuit boards that are installed in the accessory slots.
The interface boards connect to external I/O devices, such as,
printers, terminals, or disk drives. Although the keyboard on
the Apple appears to be an integral part of the computer, it is
really an I/O device for operator input.

Software
The software components control the actions of the computer.
The software components you will use most often are called
programs. Programs are defined as a set of instructions that
tell the computer to perform a certain task in a specified
manner. Software generally means a “program” but can also
include simple machine instructions. Programs are further
divided into routines, subroutines, statements, and instruc­
tions.

The fundamental building block of all software components is
the machine instruction. A machine instruction is a coded
number that the CPU recognizes as a command to perform a
low-level or “primitive” task, such as sending a character to
memory. Because it is difficult to communicate with the CPU
in machine instructions, they are organized into blocks of
instructions, called assembly language instructions.

Assembly language is a low-level programming language
which uses mnemonic symbols to indicate what each CPU
instruction does when executed. Note that there is no one
language called “assembly language” as there is a language
called FORTRAN. Assembly language is a generic term for a
microprocessor’s instruction set that can be used for program­
ming. Therefore, each microprocessor has its own assembly
language. To make writing programs easier, assembly lan­
guage instructions are organized into larger blocks for use in
high-level languages.

39

SoftCard II

High-level languages are programming languages that use
English-like statements for instructions. For example, the state­
ment “PRINT” is an instruction to print a character (or char­
acters) on the screen. It corresponds to several assembly lan­
guage instructions, which in turn correspond to several ma­
chine instructions. The term “high-level” refers to the degree
of complexity in how the language is structured and the amount
of memory required to run it. BASIC, FORTRAN, COBOL,
and LISP are just some of the high-level languages available.
BASIC is the most commonly used high-level language for
microcomputers.

Application programs are programs that perform a certain set
of functions associated with a specific task, such as word
processing. Application programs can be written either in a
nigh-level language or in assembly language. They form the
final level of translation between the user and the CPU. Most
application programs use normal English sentence structure
and menus.

The Role of an Operating System
An operating system is a “program” that coordinates the
different components of a computer system and provides you
with a direct way of controlling the computer. You could con­
trol your computer system without an operating system by
using assembly language instructions, but doing so would be
very time-consuming and tedious. An operating system per­
forms three functions:

1. It controls the activities of the disk subsystem (the disk
drives, interface circuits, and disk software). An operat­
ing system manages the storage and retrieval of data
from these files and monitors the location and the amount
of memory each file occupies.

2. It provides a convenient means for loading and execut­
ing programs from storage devices, such as disk drives.

3. It controls the activities of the I/O subsystem. Through
an operating system, you can control the flow of data
between the CPU and I/O devices such as the terminal,
printer, and disk drives.

40

An Introduction to CP/M

For an operating system to perform these functions, it must be
able to communicate with the CPU and the other components
of the computer system. Since different microprocessors have
different instruction sets for communication, an operating sys­
tem must be written for a specific microprocessor.

CP/M

CP/M (Control Program/Microprocessors) is an operating sys­
tem written for the 8080 and Z80 microprocessors, but not for
the Apple 6502 microprocessor. The reason is the incompatibil­
ity of the 6502 instruction set. (There are two operating sys­
tems written for the 6502 microprocessor: Apple DOS and
Apple][Pascal.)

CP/M was originally written for the Intel 8080 microproces­
sor. The Z80 microprocessor, which was introduced later, has
a very similar instruction set and is compatible with CP/M.
Many computers use either the 8080 or the Z80 microprocessor
and thus share a common means for programming. This is the
primary reason why many computers use CP/M for an operat­
ing system.

SoftCard, CP/M, and the Apple Computer
To run CP/M programs on the Apple computer, an 8080 or Z80
microprocessor is needed. The SoftCard circuit board contains
a Z80 microprocessor and the interface circuitry for running
CP/M programs.

The Z80 microprocessor on the SoftCard allows you to run
CP/M programs whenever the CP/M operating system is load­
ed into memory from disk. The CP/M bootstrap loader has
been modified by Microsoft to activate the Z80 microproces­
sor. Because all CP/M instructions are written for the Z80, all
commands from the keyboard are executed by the Z80. The
Z80, however, uses the 6502 microprocessor to process I/O
data to and from the I/O subsystem.

41

SoftCard II

Note
When you load the Apple DOS or the Apple Pascal oper­
ating systems into memory, the 6502 will execute all
instructions. The 6502 does not use the Z80 for any pur­
pose. The Z80 therefore remains in a “wait” state until it
receives a command that is part of its instruction set.

CP/M Bootstrap Loader
As explained in the previous section, an operating system is
the “program” that, among other functions, permits the com­
puter to gain access to data and other programs from a mass
storage device, such as a disk drive. Because an operating
system cannot be in memory to load itself, however, another
program must perform this function. This is done with a
program called a bootstrap loader.

The bootstrap loader in the Apple is an assembly language
routine in ROM that reads the first sector of the first track of a
disk drive into the lowest memory locations every time power
is turned off and then on, or when CONTROL-RESET is pressed.
When a CP/M disk is in drive A:, the Apple bootstrap loader
loads into memory the data that is stored on Track 0, Sector 0
of the disk. (“Tracks” and “sectors” are explained in the “Disk
Organization” section of this chapter.) This data contains a
second bootstrap loader. When loaded into memory, the second
bootstrap loader in turn loads the rest of CP/M. This process
is shown in Figures 4.1 and 4.2. Once CP/M has been loaded
into memory, it uses other loader routines to load CP/M
programs.

42

An Introduction to CP/M

Figure 4.1. Memory Locations

43

SoftCard II

Figure 4.2. The Bootstrap Loader

44

An Introduction to CP/M

The process of loading and starting the operating system is
called “booting.” CP/M can be booted by one of two methods.
The first is a cold start, which loads the entire operating
system into memory after the power has been turned off and
then back on. Cold starts are performed whenever you want to
reload the entire operating system. For example, if you were
using Apple DOS and wanted to use a CP/M program, you
would first remove the Apple DOS disk from drive A: and
replace it with a CP/M system disk. Then, you would perform
a cold start by pressing the RESET key while holding down the
CONTROL and OPEN-APPLE keys (Apple //e computers only).

Note
On Apple][and It Plus computers, a cold start is performed
by turning the power off and then back on.

The other booting method is a warm start. A warm start is
performed by pressing CONTROL-C. The difference between the
two is that a cold start reads the whole CP/M operating system
into memory while a warm start reads in only a portion of
CP/M. The rest of CP/M is assumed to be intact since there has
been no loss of power. The programs, if operating properly, will
not alter the memory containing the other part of the CP/M
operating system. Warm starts are used whenever you change
disks in the active drive; or when you need to clear an error
condition.

How CP/M Uses Memory
The CP/M operating system that you receive with the Soft-
Card II system consists of two types of software: sets of assem­
bly language routines organized into modules, and executable
programs called transient programs. (Transient programs are
explained in the “CP/M Transient Programs” section in this
chapter.) The software modules that are loaded into memory
form the nucleus of CP/M. These modules perform the func­
tions of an operating system. (See “The Role of an Operating
System” earlier in this chapter.)

45

SoftCard II

BIOS
Basic Input Output System

BDOS
Basic Disk Operating

System

COP
Console Command

Processor

TPA
Transient Program Area

(your program)

Reserved for CP/M

65535 top of memory

256

0 bottom of memory

Figure 4.3. Software Module

When you load CP/M with a cold start, you are loading only
the software modules into memory. The modules are loaded
into specific areas of memory, as shown in Figure 4.3. The
lowest section of memory is reserved for the bootstrap loader
routine first, and then any other software necessary for per­
forming warm and cold starts. (Note that the TPA is not a
software module, but a dedicated area of memory for pro­
grams.) The three CP/M software modules are the CCP, BIOS,
and BDOS.

The TPA (Transient Program Area) is where programs or
languages are stored and executed under CP/M. For the Soft-
Card version of CP/M, programs up to 59K bytes in size can
run in the TPA.

46

An Introduction to CP/M

The CCP (Console Command Processor) is the software module
which controls the interaction between you and the computer
at CP/M command level. The CCP is the part of CP/M that
allows programs to be loaded into the TPA and run. It also
permits files to be created and deleted, and performs other
“housekeeping” functions. The CCP is discussed in more detail
in the section on built-in commands in this chapter.

Note
The “command level” mode of operation is when CP/M
controls the computer and all commands are executed
through the CCP. The inverse is the “program level”
mode of operation, when a program controls the computer
and permits only certain commands to be typed.

The BIOS (Basic Input and Output System) is the software
module which contains the assembly language routines in
CP/M that are machine-dep endent. These are the routines that
are written for a specific implementation of CP/M (in this
case, the SoftCard II system in the Apple computer). The BIOS
module contains all the I/O programs for communicating with
the terminal, the disk controller interface, and other I/O de­
vices.

The BDOS (Basic Disk Operating System) is the software
module which manages the disk subsystem. The BDOS, unlike
the BIOS, is machine-independent. The assembly language
routines contained in the BDOS module are the same for all
computers, regardless of the disk drive interface circuitry or
the particular combination of I/O devices connected to the
computer (the system configuration). The BDOS can be consid­
ered the core, or the heart, of CP/M.

Because the BDOS and the CCP modules are generally the
same for all computers and the BIOS can be modified for each
type of computer, CP/M can run on a variety of computers.

47

SoftCard II

I/O Communication
CP/M communicates with I/O devices through the BIOS mod­
ule. The BIOS module contains four 2-part interface routines
that can be modified to accommodate a wide variety of I/O
devices. The four I/O interface routines are each divided into
two categories: logical devices and physical devices.

The logical device is an assembly language subroutine in the
software that is a logical representation of the I/O function (as
opposed to an actual device). In CP/M there are four logical
devices, each corresponding to a general I/O function. They
are: CONSOLE (CON:), for input and output to and from a
console or terminal; READER (RDR:) for input; PUNCH
(PUN:) for output only; and LIST (LST:) for output to a listing
device, such as a printer.

The other part of the I/O interface is the physical device. The
physical device is a vector that points to an assembly lan­
guage routine called a driver. (A vector is an address contain­
ing an instruction that causes the CPU to “jump” to another
address that is usually the start of another routine.) A driver
routine is the software that is written to communicate with a
specific type of physical device.

CP/M Physical Devices

In the SoftCard implementation of CP/M there are 11 physical
devices; each corresponds to a specific type of I/O device. The
following list shows the possible physical devices for the Soft-
Card version of CP/M.

Device Description

TTY: (Teletype) Normally points to the Apple keyboard
and monitor.

CRT: (Cathode ray tube) Same as TTY:, but used for an
external terminal.

UC1: (User-defined console device) An I/O device that
can be used for input or output.

48

An Introduction to CP/M

Device Description

PTR: (Paper-tape reader) Used for an input-only device
from slot 2.

UR1: (User-defined reader #1) Same as PTR:, but can be
modified by the user.

UR2: (User-defined reader #2) This device is the same as
UR1:.

PTP: (Paper-tape punch) Any standard Apple interface
board capable of processing output from accessory
slot 2.

UP1: (User-defined punch #1) Same as PTP:, but can be
modified by the user.

UP2: (User-defined punch #2) This device is the same as
UP1:.

LPT: (Line printer) The LPT: device is any standard
Apple interface board installed into slot 1 capable
of receiving output.

ULI: (User-defined list device) Same as LPT:, but can
be modified by the user.

The Apple computer communicates with I/O devices using a
method called memory-mapped I/O, so that each of the physi­
cal device routines communicates with a specific accessory
slot. Most driver subroutines are located in the ROM of the
installed interface board in the accessory slot.

An example of how memory-mapped devices work would be a
line printer. The interface board for the line printer must be
installed in slot 1. For CP/M to communicate with the line
printer, the LPT: physical device points to the slot address of
accessory slot 1. The actual communication subroutine for
communication between the LST: logical device and the print­
er is contained in ROM on the interface board.

49

SoftCard II

One advantage of using the logical device/physical device
interface is that it permits you to select the I/O device you
wish to communicate with, by using an operating system com­
mand or a statement in a program. For example, if you are
using two printers, printer output can be directed to the printer
of your choice by using the STAT program. (STAT changes
logical to physical device assignments.)

Logical to Physical Device Assignments

The possible logical to physical device assignments are noted
below. (The first physical device for each logical device is the
normal assignment.)

Note

Logical
Device

Valid
Physical Devices

CON: TTY:, CRT:, UC1:, BAT:

RDR: TTY:, PTR:, URL, UR2:

PUN: TTY:, PTP:, UP1:, UP2:

LST: LPT:, TTY:, CRT:, ULI:

BAT: (Batch processing mode) directs input from the cur­
rently assigned RDR: device to the CON: device. Output
is directed to the currently assigned LST: device.

The other advantage of the logical/physical device system is
that it can be used in many different implementations, thus
freeing the programmer from adding any additional code for
each system’s particular I/O configuration. The user doesn’t
need to monitor which I/O devices are connected to the com­
puter and in what particular configuration.

50

An Introduction to CP/M

Communication with the disk drive system is similar to I/O
communication, but is confined to the logical disk device
(DSK:) being assigned to the available disk drives. Only one
disk drive (of the four possible disk drives) can be accessed at a
time.

CP/M Disk Drive System
The disk drive system is the permanent storage media for
CP/M. To use the disk drive system effectively, you should be
familiar with how CP/M stores data on the disk drive system.

Disk Organization

Information is stored on a disk in blocks of 128 bytes. Each of
these blocks is referred to as a “sector.” Each sector has a
unique address or location on the disk and information is
stored and retrieved by telling the disk drive to read or write
information to a specific sector. The sectors are laid out on the
disk in concentric, circular tracks, as shown in Figure 4.4.

In the SoftCard version of CP/M, there are 16 sectors per track
and 35 tracks per disk. Fortunately, when you type a com­
mand to access information on a disk, you don’t have to know
the track and the sector. You need to know only the name of the
file and the disk that it is located on. CP/M will find the sector
and track automatically.

Note
See the section “CP/M Disk Files” in this chapter for an
explanation of the CP/M disk file system and instructions
on how to access information on the disk.

51

SoftCard II

CP/M Disk Types

CP/M recognizes two types of disks: system disks and data
disks.

A CP/Msystem disk contains the CP/M operating system and
can be loaded into memory with a warm start or a cold start
from drive A:. A system disk must contain the CCP, BDOS,
and BIOS modules. Any CP/M transient programs contained
on the disk are optional. CP/M system disks can be created
with the /S switch of the COPY utility program.

52

An Introduction to CP/M

Another type of system disk is the startup disk (also called a
boot disk). Startup disks are used by application programs;
they have either an operating system on them or the parts of
an operating system necessary to handle the program’s needs.
You can create your own CP/M startup disks with the AUTO­
RUN program described in Chapter 6.

Data disks have no operating system data on them. They are
used for the storage of programs and data files only. Since
operating system information is not included, data disks have
an additional 12K bytes of disk space available. Data disks are
created with the /D switch of the COPY utility program.

Important
You should avoid using data disks in drive A: and in
single-drive systems. The lack of an operating system on
a data disk makes CP/M unable to perform a warm start
and recover from errors.

Changing Disks

Whenever you change CP/M disks, you must perform a warm
start because specific disk directory information is stored in
memory at all times. This information is used to allocate space
on the disk. When you change disks, this information must be
replaced with the directory information of the newly inserted
disk.

53

SoftCard II

CP/M Disk Files
All data stored on disks is organized into files. A file is any
collection of data, text, or program instructions. All files are
referenced by file specifications, which keep track of where
information is stored on the disk and what type of information
it is. A CP/M file specification, or filespec, consists of three
parts and is shown in the following notation:

[d:]filename[.ext]

The d: is the disk drive identifier, the filename is the filename,
and .ext is the filename extension. All three parts are explained
in the following paragraphs.

Disk Drive Identifier

The disk drive identifier is a one-letter code (A-D) followed by a
colon (:). It tells CP/M which drive the file is located in. Note
that the disk drive identifier is optional. If it is not included,
CP/M looks for the specified file on the default or active drive.
The active drive is the disk drive that you are currently work­
ing from. For example, when you see the A> prompt, drive A: is
the disk drive that will be accessed when you give a command
without a disk drive identifier. It also means that you are at
the CP/M command level of operation.

Note
In other documentation, the active drive is also referred
to as the currently logged drive.

54

An Introduction to CP/M

Filename

The filename identifies the disk file and is the only required
part of a filespec. CP/M filenames must start with a letter. (In
some operating systems, filenames can begin with numbers or
special characters.) CP/M filenames can be from one to eight
characters in length and can consist of uppercase and lower­
case characters. Filenames that contain both uppercase and
lowercase characters will have all lowercase characters trans­
posed into uppercase characters. For example, the filename
“Program” would be transposed by CP/M into “PROGRAM.”

If you include a filename extension (a three-character code)
with the filename, it must be separated by a period (called a
delimiter).

The following are examples of valid CP/M filenames:

A:MAILLIST

Refers to the file MAILLIST on drive A:.

Refers to the file R on the currently logged drive.
Notice that this filename has only one letter.

B:BARBARA

Refers to the file BARBARA on drive B:.

Filename Extension

The filename extension denotes either the internal format of a
file (the type of information in the file) or the different versions
of a file. The filename extension can be from 1 to 3 characters
long. For example, FNAME.l could be the first version of the
program FNAME. If you create a second version (or revise the
first), you can save both versions by giving them different
filename extensions (FNAME.l and FNAME.2).

55

SoftCard II

Several file types have meanings that are unique—to the CP/M
operating system, to the standard CP/M transient programs,
and to the high-level languages. For example, a .COM file is a
“Command" file; that is, a directly executable transient pro­
gram. Since certain program file operations could destroy the
contents of a data file, it is a good idea to use the file type as the
filename extension when you create the file. This avoids con­
fusion when you want to use the file at a later date. Table 4.1
lists the file types commonly used for CP/M.

Table 4.1
CP/M File Types

File
Extension Type of File

.ASM Assembly language source code

.BAK Backup file

.BAS BASIC source code

.COB COBOL source code

.COM Command file

.CRF Relocatable assembler cross-reference

.DAT ASCII data (FORTRAN default)

.DOC Text document file

.FOR FORTRAN source code

.HEX Intel HEX format object code file

.LIB Library file

.MAC Macro assembler source file

.OBJ Machine code (object file)

.OVR COBOL compiler overlay

.PRN Assembly language list file (PRINT file)

.REL Relocatable object file

.SUB SUBMIT command file

.SYM Assembler symbol table

.TXT Text file

.XRF Assembler cross-reference table

.$$$ ED or PIP temporary file

56

An Introduction to CP/M

Wild Card Filename Specifications

File specifications can also refer to more than one file at a
time. This is done with “wild card” characters. CP/M has two
wild card characters for use with filespecs: the asterisk (*) and
the question mark (?). The asterisk character will match any
string of characters in the filespec. The question mark charac­
ter will match any character in the position occupied by the
question mark during a directory search for the filename
match. The following examples show some of the ways you can
use wild card characters.

A:*.COM

Refers to all files on drive A: with an extension of
.COM.

B:*.*

Refers to all files on drive B:.

B:????????.???

Exactly the same as B:*.* above.

DUMP.*

Refers to all files on the currently logged drive begin­
ning with the filename “DUMP.”

C*.*

Refers to any file on the currently logged drive begin­
ning with the letter C and containing any extension.

0.

This is the same as *.*. The asterisk (*) is an abbre­
viation for a string of question marks (?). If an
asterisk is included as part of the string, CP/M
ignores all characters to the right of the asterisk
and treats the whole string as a wild card character.
Note the difference between this example and the
next example.

57

SoftCard II

?0??????.*

Refers to all files with 0 as the second letter of the
filename on the active drive with any filename ex­
tension.

Built-in Commands
CP/M executes two types of commands, built-in and transient.
Built-in commands are programs that reside permanently in
the CCP module and can be used at any time. Transient com­
mands are programs stored on a disk. Transient commands
are also called transient programs.

Built-in commands are direct commands to the CPU given at
the CP/M command level. They are always present whenever
CP/M is active and no other programs are running. Built-in
commands perform tasks such as displaying the contents of a
file or a directory of disk files, renaming and erasing files, and
saving the contents of memory on disk.

CP/M Built-in Commands

The SoftCard version of CP/M has seven built-in commands.
Each command and its purpose is listed below. For instruc­
tions on using each of the commands, see the appropriate sec­
tion in Chapter 6.

Command Purpose

d: Logs onto another disk drive

DIR Displays a directory of files on disk

ERA Erases a file or files

REN Renames a file

58

An Introduction to CP/M

Command

SAVE

TYPE

USER

Purpose

Saves the contents of memory in a file on disk

Displays the contents of a file on the monitor
screen

Creates another area within the same direc­
tory

CP/M Transient Programs
A transient program is a program that can be executed as a
command. The main difference between built-in commands
and transient programs is that transient programs are stored
on disk until they are executed. Built-in commands are stored
in the CCP module in memory. Transient programs perform
operations associated with programming and utility tasks
such as copying files and transferring data between devices.

When not in use, transient programs are stored on disk in
.COM (command) files. When you type the name of a .COM
file, CP/M will load the contents of the file into memory and
execute the instructions it finds in the file.

Most CP/M commands and transient programs (with a few
exceptions, such as REN) are extensible. That is, they may be
extended semantically to include additional operations. For
example, the DIR command could include an argument (an
entry you type in the command line) for a list of specific file
types (such as BASIC files). In this case, you could type *.BAS
in the DIR command line. This instructs CP/M to display only
those files with the extension of .BAS (BASIC files).

SoftCard CP/M includes 16 transient programs. Table 4.2 lists
the names of the programs, their purpose, and the section of the
manual that gives instructions on their use.

59

SoftCard II

Table 4.2
CP/M Transient Programs

Program Purpose Refer to:

APDOS Transfers text files and
binary files from Apple DOS
to CP/M.

Chapter 6

ASM * Assembles 8080 assembly
language programs.

Osborne CP/M
User Guide

AUTORUN Automatically executes a
previously specified CP/M
command line when the
system is booted.

Chapter 6

BOOT Exits CP/M and reboots
your Apple //e system.

Chapter 6

CAT Displays an alphabetical
listing of the directory on the
specified drive.

Chapter 6

COPY Makes duplicate copies of
disks. Options to COPY let
you format disks and create
CP/M system disks.

Chapter 6

DDT * Debugs 8080 assembly
language programs.

Osborne CP/M
User Guide

DUMP * Displays a file in hexa­
decimal form.

Osborne CP/M
User Guide

ED * Creates and edits CP/M
text files.

Osborne CP/M
User Guide

LOAD * Converts a .HEX file into a
.COM file.

Osborne CP/M
User Guide

MFT Copies files from one disk to
another on a single-drive
system.

Chapter 6

60

An Introduction to CP/M

* These programs are part of CP/M 2.2 and were written by Digital Research,
Inc. All other transient programs were written by Microsoft.

Program Purpose Refer to:

PATCH Makes program updates and Chapter 6
modifications.

PIP * Copies and/or appends disk Chapter 6
files and devices.

STAT * Displays status and makes Chapter 6
device assignments.

SUBMIT * Batch processes commands Osborne CP/M
from a disk file. User Guide

XSUB * Allows character input to a Osborne CP/M
program from a Submit User Guide
input file.

61

Chapter 5
Using CP/M With
the Apple Computer

CP/M and the Apple][65
The Apple][Keyboard 65
80-column Displays 65

Using the Apple lie Keyboard With CP/M 66
Keys You Must Use Precisely 66
Cursor Movement Keys 67
Apple Escape Key Sequences 67
Apple //e Special Function Keys 67
Line Editing Commands 68
Type-ahead Buffer 69

Using I/O Devices With CP/M 69
Print Operations 70
Running Application Programs 71

63

Using CP/M With the Apple Computer

This chapter explains how CP/M works with the SoftCard II
system and the Apple][or //e computer. Although most of the
material in this chapter applies to both the Apple][and the //e
computers, the section called “CP/M and the Apple][” is for
Apple][users only.

CP/M and the Apple][

CP/M operation differs slightly from the Apple II (and][Plus)
computer and the Apple //e computer for two reasons. First, the
Apple][has a different keyboard, and second, the Apple][
wasn’t designed for 80-column video display. Otherwise, the
SoftCard II system operates the same in both models.

The Apple][Keyboard
Because the Apple H does not have an ASCII standard (type­
writer configuration) keyboard, certain characters, such as
right and left brackets ([]) and the backslash (\) are not included
on the Apple H keyboard. For a program that requires these
characters, you can, with the CONFIGIO program, redefine
other keys to type these characters. See “Keyboard Character
Definition,” Chapter 6 in the SoftCard IIProgrammer's Man­
ual, to learn how to change key assignments.

Since the Apple K and][Plus computers don’t have the special
Apple keys, cold starts are performed by turning the power off
and then back on.

80-column Displays
Because the Apple][was originally designed for a 40-column
display, you must install an 80-column video display board in
accessory slot 3. Otherwise, you’ll get only half the display.
(See Table 2.1 in Chapter 2.) However, before using it, please
read Appendix C in the SoftCard II Programmer's Manual for
notes on 80-column operation.

65

SoftCard II

Using the Apple //e Keyboard With CP/M

With CP/M, the typewriter portion of the keyboard (see Figure
5.1) works as it does with the Apple DOS or Apple Pascal
operating systems. Several keys, however, work differently
and there are certain CONTROL key sequences that are unique
to CP/M.

Figure 5.1. Apple //e Keyboard

Keys You Must Use Precisely
The keys described in the “Keys You Must Use Precisely”
section of the Apple //e Owner’s Manual must be used exactly
as described in that section. The only exception is the DELETE
key. The DELETE key has been redefined by the SoftCard II
system as the CP/M key RUBOUT.

66

Using CP/M With the Apple Computer

Cursor Movement Keys
The left cursor key («—) and the DELETE key delete characters
as they move over them. The TAB key moves the cursor seven
spaces to the right. The TAB and RETURN keys are used in the
same manner with CP/M as with Apple DOS and Apple Pas­
cal.

Unless special software is provided by an application program,
CP/M does not support cursor movement with the right, up, or
down cursor keys.

Apple Escape Key Sequences
CP/M does not support Apple DOS ESC key sequences for
cursor movement or editing. The SoftCard II version of CP/M
does, however, support two ESC key sequences. These are ESC-(
and ESC-) and they are part of the default screen function
interface. Pressing the ESC-(keys and then RETURN switches
the screen display to inverse video (dark characters on a light
background.) Pressing ESC) and RETURN switches the screen
back to the normal display.

Apple //e Special Function Keys
The OPEN-APPLE and SOLID-APPLE keys are used as described
in the Apple //e Owner’s Manual. That is, pressing the OPEN­
APPLE key has the same effect as pressing the button on
hand-control 0; and pressing the CLOSED-APPLE key has the
same effect as pressing the button on hand-control 1.

Pressing the RESET key while you are at CP/M command level
will not have any effect. Pressing the CONTROL-RESET keys
will cause a CP/M cold start.

67

SoftCard II

Line Editing Commands
CP/M supports several line editing commands that allow you
to edit a CP/M command line or to edit data input to CP/M
transient programs. Most line editing commands are executed
by using CONTROL characters. CONTROL characters (denoted
by “CONTROL-”) are used by first pressing the CONTROL key
and then holding it down while you type the indicated charac­
ter. Do not press RETURN after typing a CONTROL character.
Table 5.1 lists the CONTROL characters associated with line
editing commands.

Table 5.1.
Line Editing Commands

Key Function

•*— Moves the cursor one character position to the
left and deletes characters as the cursor passes
over them.

I Backspaces and deletes the entire line.
CONTROL-E Moves the cursor to the beginning of the next

line. However, the previous line is not terminated
until the RETURN key is pressed.
Note that the carriage return/linefeed character
sequence generated by CONTROL-E is not entered
into a line, but only sent to the console.

CONTROL-H Same as the left cursor key (*—).
CONTROL-J Terminates input (linefeed).
CONTROL-M Functions the same as RETURN.
CONTROL-P Sends all ASCII character output to the printer

and to the monitor screen. This “printer echo”
mode remains in effect until CONTROL-P is typed,
or until a CP/M warm start is performed.
CONTROL-P is accepted only when console input is
required.

CONTROL-R Redisplays the current line.
CONTROLS Suspends ASCII character output to the termi­

nal. Output resumes when any other key is
pressed.

CONTROL-X Same as the down cursor key.
DELETE Same as the left cursor key.

68

Using CP/M With the Apple Computer

Type-ahead Buffer
The SoftCard II version of CP/M has a type-ahead buffer for
keyboard input. This permits you to enter commands and text
while CP/M is performing other operations. When CP/M fin­
ishes an operation, it scans the type-ahead buffer for addi­
tional commands and data. This ensures that none of your
input from the keyboard is lost. The type-ahead buffer holds
up to 256 characters.

Using I/O Devices With CP/M

The default I/O device assignments for the SoftCard II ver­
sion of CP/M are as follows:

Logical Physical
Device Device

CON: TTY: (Apple keyboard and monitor)

RDR: TTY: (Apple keyboard and monitor)

PUN: TTY: (Apple keyboard and monitor)

LST: LPT: (interface board in accessory slot 1)

The TTY: physical device communicates with the Apple key­
board and screen monitor if there is no interface board installed
in accessory slot 3. If there is an interface board installed in
slot 3, the TTY: physical device will communicate with the
device connected to the installed board.

The LST: physical device communicates with the interface
board installed in accessory slot 1. If there is no interface
board installed in slot 1, the TTY: physical device is used.

To use other physical devices, special I/O software must be
added to the patch areas of CP/M to define the location of the
physical device (i.e., the accessory slot the physical device will
communicate with). See “I/O Configuration” in the SoftCard
IIProgrammer’s Manual for instructions on adding I/O soft­
ware to the patch areas.

69

SoftCard II

Print Operations

CP/M provides several methods for sending data to a printer.
The printer, however, must be connected to an appropriate
interface board in the recommended accessory slot. See Table
2.1 in Chapter 2 for a list of recommended slot assignments.

Once all physical connections are made, you must make sure
that the logical LST: device is assigned to the right physical
device. Check the assignments with the STAT command by
typing

STAT DEV:

and pressing the RETURN key. If the LST: logical device is not
assigned to the LPT: or ULI: physical device, then use STAT
to change the device assignment. See “I/O Communication”
in Chapter 4 for an explanation of logical and physical devices.
Instructions for using STAT are given in the “STAT” section
in Chapter 6.

Note
The LPT: physical device is the I/O interface board in
accessory slot 1. ULI: is an undefined I/O interface board.

When the LST: logical device assignment has been made, you
can use either CP/M commands or the commands provided by
the application program to send output to the printer.

Many application programs, such as text editors and electronic
spreadsheets, have built-in print functions. The ability to send
data to the printer is included as part of the program. If your
program does have commands or statements for sending data
or files to a printer, you should use those commands when
running the application program. The major advantage of
using a built-in printing program is that it usually prints your
file in the format required by the application program.

70

Using CP/M With the Apple Computer

If you want to print a file at CP/M command level, you can use
either CONTROL-P and the TYPE command or the PIP program.
Instructions on how to use TYPE and PIP are given in Chap­
ter 6.

Running Application Programs

Most application programs have explicit instructions for load­
ing and running the program. Others do not. If your applica­
tion program is vague about how to load the software into the
Apple/SoftCard system, you can follow these guidelines. If the
program still can’t be run, contact the computer dealer or the
program manufacturer.

Guidelines for Running Application Programs

If the program is written in BASIC, it will often require the
GBASIC.COM file to be loaded into memory prior to running
the program.

Programs written in other languages, such as FORTRAN or
COBOL, will require the appropriate language compiler or in­
terpreter to run, unless the program is compiled into an execut­
able (.COM) file.

Check to see how much memory the application program needs
to run. The SoftCard II system has up to 58.5K bytes of memory
for application programs to use. If the program requires more
than that, contact your computer dealer or the program manu­
facturer.

Some programs will require you to re-configure the screen
function interface. This is an area of CP/M that translates
what the program sends to the operating system into what you
actually see on the terminal.

71

GBASIC.COM

SoftCard II

Application programs that are in a different disk format will
require that the disk be copied to the 5 1/4-inch disk format
used by the SoftCard II system. Contact your computer dealer
for more information.

Programs created under CP/M 2.0 and earlier versions are
compatible with the SoftCard II version of CP/M.

Important
Programs written for the previous SoftCard versions of
CP/M which access specific 6502 memory addresses
must be changed. This includes programs that were writ­
ten under Microsoft FORTRAN-80 and Microsoft BASIC
Compiler. For more information about using FORTRAN
and BASIC Compiler programs with the SoftCard II
system, see the SoftCard II Programmer's Manual.

72

Chapter 6
CP/M Commands
and Utility Programs

Command and Program Execution 76
Built-in Commands 78

d: 78
DIR 78
ERA 80
REN 81
SAVE 82
TYPE 83
USER 84

Utility Programs 86
APDOS 86
AUTORUN 91
BOOT 93
CAT 95
COPY 97
MFT 102
PATCH 103
PIP 104
STAT 109

73

CP/M Commands and Utility Programs

This chapter explains the CP/M built-in commands and util­
ity programs you will use most often. The commands and
programs that are discussed in this chapter are listed below.

CP/M Built-in Commands

d: Logs onto another disk drive.

DIR Displays a directory of the files on disk.

ERA Erases a file or files.

REN Renames a file.

SAVE Saves the contents of memory in a file on disk.

TYPE Displays the contents of a file on the monitor screen.

USER Creates another area within the same directory.

Utility Programs

APDOS Copies text and binary files from Apple DOS
disks to CP/M disks.

AUTORUN Automatically executes a CP/M command
line when the system is booted.

BOOT Exits CP/M and reboots your Apple //e sys­
tem.

CAT Displays an alphabetical directory listing of
the drive specified.

COPY Makes duplicate copies of disks. Options to
COPY let you format disks and create CP/M
system disks.

MFT Copies files from one disk to another on a
single-drive system.

75

SoftCard II

PATCH Makes program updates and modifications to
CP/M.

PIP Transfers, copies, and/or appends disk files
and devices.

STAT Displays status information and assigns de­
vices.

Command and Program Execution

All commands and programs are executed either from CP/M
command level or from the program level. The following para­
graphs define both terms.

“Command level” is the CP/M command level of operation; all
commands are executed through the CCP module. (See “How
CP/M Uses Memory” in Chapter 4.) Command level is indi­
cated by the CP/M command prompt (the active disk drive
letter followed by the > sign).

To execute utility programs at command level, type the com­
mand line using the program name and arguments. Do not
type the .COM extension. Programs executed at command
level will always return control of the computer back to com­
mand level. This is useful for a single task, such as copying a
single file from one disk to another.

The “program level” of operation is when a program controls
the computer and permits only certain commands to be typed
from the keyboard. For programs that are part of the SoftCard
II system, the asterisk prompt (*) indicates that the computer is
at program level. Other application or utility programs may
display another character or a menu to indicate program level
operation.

76

CP/M Commands and Utility Programs

To execute commands at program level, you must first type the
name of the program and then press RETURN. The program is
loaded into memory and the asterisk prompt is displayed. You
may then enter the command line without typing the program
name. Commands executed at the program level will return
control back to the program level. This is useful for repetitive
tasks, such as copying more than one disk.

Using Utility Programs

SoftCard II utility programs can be executed at CP/M com­
mand level or at program level. The AUTORUN, BOOT, CAT,
and STAT utility programs can be executed from CP/M com­
mand level only. The APDOS, COPY, MFT, PATCH, and PIP
utility programs are run from CP/M command level or pro­
gram level.

To stop or abort a utility program, press CONTROL-C. You can
also use the line editing commands described in Chapter 5 to
edit utility program commands.

Using CP/M Built-in Commands

CP/M built-in commands are executed from the CP/M com­
mand level only. Their use does not require that a system disk
be in the active drive. However, if you encounter a “BDOS
ERR ON d:” type of error, you must insert a CP/M system disk
in the active drive to recover from the error and to continue.

77

SoftCard II

Built-in Commands

The following section explains how to use the CP/M built-in
commands. Examples are included with each command.

The d: command allows you to change active drives in multiple­
drive systems. The active drive is the disk drive that contains
the CP/M system disk you are currently working from. (See
“CP/M Disk Files” in Chapter 4.)

To change the active drive, type the letter which represents the
drive you wish to designate followed by a colon (:), and press
RETURN. For example,

B:

followed by pressing the RETURN key changes the active drive
to drive B:. If you change the active drive, CP/M changes the
prompt letter accordingly.

DIR
The DIR (DIRECTORY) command scans a specified disk to
determine what files are on that disk. Typing DIR (with no
arguments) displays only the sequential list of filenames on a
disk in the specified drive. DIR can also display specified files
when you use arguments in the command line.

Displaying a Disk Directory

DIR, when used in the following format, scans the disk direc­
tory of the disk in the drive specified and displays the direc­
tory entries (files) it finds.

DIR [d:]

78

CP7M Commands and Utility Programs

Typing DIR without the d: argument scans the disk directory
of the active drive. For example,

DIR

displays the disk directory of files on the active drive. To scan
the disk directory of another drive, type the drive letter (d:) in
the command line.

DIR B:

displays the disk directory of files on the disk in drive B:. If no
files are found, CP/M displays the message:

NO FILE

Displaying Single and Multiple Disk Directory Entries

To find and display a specific file(s) on a disk, type DIR in the
following format,

DIR [d:][filename.ext]

and press the RETURN key. The d: argument permits you to
search other disk drives for the specified file or files. For
example,

DIR B:GBASIC.COM

scans drive B: for the file GBASIC.COM.

To find a particular file, type the filename.ext of the desired
file. If you want to display a certain type of file, type “wild
card” characters (? or *) in the filename.ext argument. (Wild
card characters are explained in “CP/M Disk Files” in Chap­
ter 4.) Wild card characters also allow you to search for files
that begin with a certain letter or share a common name. For
example,

DIR D???.BAS

searches the disk directory of the active drive for all files
beginning with D and having between one and four characters

79

B:GBASIC.COM
GBASIC.COM

SoftCard II

in the filename with a filename extension of .BAS. Another
way to use a wild card character in the filespec would be to
type:

DIR *.COM

The *.COM instructs DIR to scan the active drive for all files
with a .COM filename extension.

ERA
The ERA (ERASE) command erases specified files from a
disk. You may use ERA to erase files from any disk as long as
you include the file specification (filespec). Wild card charac­
ters can be used in the filespec.

Erasing a File

To erase a single file, type ERA in the following format,

ERA filespec

and press the RETURN key. The filespec is the name and the
location of the file. For example:

ERA B:TEMP.OLD

erases the file TEMP.OLD from the disk in drive B:.

Erasing Multiple Files

To erase multiple files, include wild card characters (? or *) in
the filespec argument of the command line. For example,

ERA C:*.BAS

erases all files with the extension .BAS from the disk in drive
C:. Another example would be:

ERA *.*

80

CP/M Commands and Utility Programs

This command line erases all files on the disk in the active
drive. If you attempt to erase all the files on a disk, CP/M will
ask: ALL (Y/N)? If you want to erase all the files on the disk,
press the Y key. Otherwise, press either the N or the RETURN
key.

REN
The REN (RENAME) command renames files while leaving
the file text intact. Unlike the other built-in commands, wild
card characters cannot be used in the filespec. Therefore, you
can only rename one file at a time.

Renaming a File

To rename a file, type REN in the following format:

REN [d:]new filename.ext=old filename.ext

Press the RETURN key to execute the command. The new file­
name.ext argument is the new name of the file and old file­
name.ext is the original name of the file. For example,

REN TEMP.NEW-TEMP.OLD

renames the file TEMP.OLD as TEMP.NEW on the active
drive.

If the file is on a disk drive other than the active drive, include
the drive identifier (d:) in the command line, as in the following
example:

REN B:PEAR.COM-APPLE.COM

81

APPLE.COM

SoftCard II

SAVE
The SAVE command saves the contents of memory in a speci­
fied disk file. It is used mainly for program development.

Saving Memory Contents in a Disk File

You can save what you entered into memory by typing SAVE
in the following format:

SAVE nnn filespec

The nnn argument is the number of memory pages to be saved.
(A page of memory is equal to 256 bytes.) The filespec is the
drive and the file where you will save the memory contents. For
example,

SAVE 2 B:DATA.BIN

saves 2 pages of memory in a file called DATA.BIN on disk
drive B:.

To use SAVE, you must know how many memory pages are to
be saved. The memory pages to be saved will start at memory
location 100H (hexadecimal). The nnn argument, however,
must be entered as a decimal number. Instructions on how to
convert the hexadecimal address to a decimal number are
given in the Osborne CP/M User Guide.

82

CP/M Commands and Utility Programs

TYPE
The TYPE command displays the contents of a specified text
file on the screen. This provides a quick way of examining a
file for errors or to check the contents. It can also be used to
print a file in conjunction with the CONTROL-P line editing key.

Note
If you attempt to TYPE a file that is not a text file,
meaningless characters will appear with unpredictable
results.

Displaying a Text File on the Monitor Screen

To display a file on the monitor screen, enter TYPE in the
following format:

TYPE filespec

The filespec is the location and name of the file. No wild card
characters are allowed in the filespec. For example,

TYPE DUMP.ASM

displays the contents of the file DUMP.ASM in the active
drive on the screen.

Printing a Text File With TYPE

The CONTROL-P is an on/off line editing command that con­
trols the output to the printer. When used with the TYPE
command, it permits you to print the contents of a text file
while it is being displayed on the screen.

83

SoftCard II

Note
CONTROL-P assumes there is a print device assigned to
the LST: logical device. Before printing a file with TYPE,
check the logical device assignments with the STAT
command.

To print a text file, press CONTROL-P and then type the com­
mand:

TYPE files pec

and press RETURN. For example, press CONTROL-P, then type:

TYPE B:DUMP.ASM

Press RETURN to execute the command. This example will
print the file DUMP.ASM in drive B:, as it is being displayed
on the screen.

USER
The USER command separates disk memory into user areas.
The user areas are designated by numbers (i.e., 0, 1, 2, and so
on). This command is useful for creating multiple file direc­
tories (one per user area) on disks. However, USER is of limited
value with floppy disks because of the small memory areas
they contain. If you have a hard disk, USER allows you to
maintain separate memory areas on the same disk.

Copying files from one user area to another is described in the
“PIP” section of this chapter.

84

CP/M Commands and Utility Programs

Creating a User Area

To create a new user area on the disk in the active drive, type
USER in the following format,

USER n

and press the RETURN key. The n argument is the number (any
unused number between 0 and 15) of the new user area.

If the specified number hasn’t been used on that particular
disk, USER creates the user area for that number. For exam­
ple, if you already have three user areas (0, 1, 2) and you wish
to create a fourth one, type

USER 3

and press RETURN. This immediately creates user area 3 and
transfers you to that area.

Changing the Active User Area

To change the active user area, type

USER n

and press the RETURN key. The n argument is the number of
the desired user area. For example, type

USER 0

to change the active user area back to area 0.

Note
If you attempt to execute a program in a .COM file which
is not in the current user area, CP/M automatically
searches user area 0 for that file. This applies to .COM
(Command) files only.

85

SoftCard II

Utility Programs

The following section explains the CP/M utility programs
included in the SoftCard II package. These are the programs
that you will use most often. Examples are given with each
program.

APDOS
APDOS.COM is a utility program that copies Apple text and
data files from Apple DOS disks to CP/M system disks.

Note
Apple DOS text and data files are usually incompatible
with CP/M. You can, however, copy the files to CP/M
system disks and modify them with a text editor.

APDOS can copy files from CP/M command level or from the
APDOS program level. From CP/M command level, the com­
mand line is typed and then executed by pressing the RETURN
key. APDOS will exit to CP/M command level after each
execution.

To run APDOS at the program level, type APDOS and press
RETURN. The program level command line can then be exe­
cuted when the asterisk prompt appears. APDOS will return
to the program level prompt after executing the command line.

Copying Single Apple DOS Data and Text Files to CP/M

Use the following procedure to copy a single Apple DOS data
or text file to CP/M. This procedure assumes that you are at
CP/M command level.

1. Put a CP/M system disk with the file into
drive A:.

APDOS.COM

86

APDOS.COM
APDOS.COM

CP/M Commands and Utility Programs

2. Type the name of the file to be transferred in the follow­
ing format,

APDOS [d:]cp/mfilename.ext=[s:]dosfilename

where d: specifies the destination disk drive and s: speci­
fies the source disk drive. For single-drive systems, enter
A: for both source and destination drives.

The cp/mfilename.ext argument is the name of the CP/M
destination file and dosfilename is the name of the Apple
DOS file you wish to copy. When you have typed the
command line, press the RETURN key to execute the com­
mand.

3. When APDOS has been loaded into memory, it will then
display:

INSERT APPLE DOS DISK IN DRIVEs:
INSERT CP/M DISK IN DRIVE d:
PRESS RETURN TO BEGIN

Follow the instructions shown on the screen and insert
the disks into the appropriate drives. For single-drive
systems, you will have to change the disks in drive A:
after the Apple DOS file has been copied into memory.

When the copy process has been completed, APDOS dis­
plays the message

TRANSFER COMPLETE

and exits to CP/M command level.

4. Type

DIR files pec

and press the RETURN key to verify that the Apple DOS
file has been transferred to your CP/M disk.

87

SoftCard II

Copying Multiple Apple DOS Data and Text Files to CP/M

Use the following procedure to copy multiple Apple DOS data
and text files to CP/M. The procedure assumes that you are
starting at CP/M command level.

1. Put a CP/M system disk with the file into
drive A:.

APDOS.COM

2. Type APDOS and press RETURN. When you see the aster­
isk prompt, type the name of the file to be transferred in
the following format:

[d:]cp/mfilename.ext=[s:]dosfilename

cp/mfilename.ext is the name of the CP/M destination
file and dosfilename is the name of the Apple DOS file
you want to copy. When you have typed the command
line, press the RETURN key to execute the command.

3. When APDOS is loaded into memory, it will display:

INSERT APPLE DOS DISK IN DRIVEs:
INSERT CP/M DISK IN DRIVE d\
PRESS RETURN TO BEGIN

Follow the instructions shown on the screen and insert
the disks into the appropriate drives. For single-drive
systems, you will have to change the disks in drive A:
during the copy process. The screen will display instruc­
tions for doing so.

When the copy process has been completed, APDOS dis­
plays the message

TRANSFER COMPLETE

and displays the APDOS program prompt. Repeat steps
2 and 3 for each Apple DOS file you plan to copy.

4. To exit APDOS, press CONTROL-C.

88

APDOS.COM

CP/M Commands and Utility Programs

5. Type

DIR files pec

and press the RETURN key to verify that the Apple DOS
file has been transferred to your CP/M disk.

Copying Apple BASIC Programs to CP/M

The format of Apple DOS BASIC files (Applesoft BASIC or
Integer BASIC) must be modified before they can be copied
with the APDOS program. Use the following procedure to
modify and copy Apple DOS BASIC files to a CP/M disk.

1. Insert the source Apple DOS disk into drive A:.

2. Load Apple DOS into memory by pressing the CONTROL
and RESET keys or by turning on the power. When the
Apple DOS prompt (*) appears, type

LOAD filename

and press the RETURN key to execute the command.

3. Type LIST to obtain a listing of the file. After the listing
appears, type the following line as the first line of the
program:

0 PRINT“CHR$(4)+“OPEN APPLEPROG”:PRINT“CHR$(4)
WRITE APPLEPROG”:POKE 33,33:LIST:PRINT
“CHR$(4) CLOSE”:END

Note
The program line shown above should be typed with­
out pressing the RETURN key. It may appear to be
two lines as you type it, but it is actually only one
line in the BASIC program.

Press the RETURN key when finished.

89

SoftCard II

4. Run the program by typing

RUN

and then pressing the RETURN key. The program makes a
text file copy of your program called APPLEPROG.

5. Remove the Apple disk from drive A:. Insert a CP/M
system disk containing the APDOS program into drive A:.

6. Load CP/M into memory by typing

PR#6

and press the RETURN key.

7. At CP/M command level, type

APDOS

and press the RETURN key.

8. If you have a multiple-drive system, type

APPLE.BAS=APPLEPROG

at the APDOS program prompt (*), and press the RETURN
key. If you have a single-drive system, type

APPLE. BAS-A:APPLEPROG

and press the RETURN key.

9. Follow the instructions shown on the screen.

10. Exit APDOS by pressing CONTROL-C.

11. At CP/M command level, type

GBASIC

and press the RETURN key.

90

CP/M Commands and Utility Programs

12. When you see the GBASIC “Ok” prompt, type

LOAD “APPLE”

and press the RETURN key.

13. Delete line 0 (the line entered in step 3).

This completes the APDOS BASIC file copy procedure. A
copy of your Apple DOS BASIC program (called APPLE.BAS)
now exists on the CP/M disk and in memory. If you want to
copy more than Apple BASIC file to the same CP/M disk,
rename the APPLE.BAS file and repeat the procedure.

Note
Because of the differences between Apple BASIC and
Microsoft BASIC, the copied program must be edited to
change the Apple POKE, PEEK, CALL, and disk file
statements into their equivalent Microsoft BASIC state­
ments. See Appendix Din the Microsoft BASIC Interpre­
ter Ref erence Manual for more information on converting
programs to Microsoft BASIC.

AUTORUN
AUTORUN.COM is a utility program that permits you to cre­
ate startup disks. Startup disks are system disks that auto­
matically execute a startup program when a cold or warm
start is performed.

When you create a startup disk with AUTORUN, any CP/M
command line (that is, any CP/M program or command) can
be automatically executed each time the system is started
with either a warm or cold start. Thus, you can automatically
load and run programs without ever seeing the CP/M A>
prompt.

91

AUTORUN.COM

SoftCard II

Creating Startup Disks

Use the following procedure to create a CP/M startup disk.

1. Load CP/M into memory.

2. Use the PIP utility program to copy
onto the system disk that you plan to use.

AUTORUN.COM

3. At CP/M command level, type the command line in the
following format,

AUTORUN [command line]

and press the RETURN key. The command line argument
is any executable CP/M program name or CP/M built-in
command. For example,

AUTORUN CAT

displays the directory on the default drive when you boot
the system.

Repeat the procedure for each startup disk.

To change the command line on a disk, type AU TOR UN again
with a new command line. Typing AUTORUN without a
command line deletes the previous AUTORUN command line
from the disk.

Loading Startup Disks

To execute a startup disk, it must be loaded in the active drive
(usually drive A:). When you start the system, the command
line will be executed immediately after the CP/M operating
system modules are loaded into memory. For example,

AUTORUN GBASIC PROG

loads and runs GBASIC after CP/M. The BASIC program
PROG is loaded and executed after GBASIC.

92

AUTORUN.COM

CP/M Commands and Utility Programs

BOOT
BOOT.COM is a program that reboots your Apple][or //e
computer from any system disk at CP/M command level. BOOT
performs the same function as a CP/M “cold start.” It can
boot Apple DOS, Apple Pascal, Applesoft BASIC, Integer
BASIC, or any Apple][or //e application software disk.

Loading CP/M With BOOT

Insert a system disk that contains BOOT.COM into the active
drive. Type

BOOT

and press the RETURN key. BOOT executes the cold start
loader in ROM which loads CP/M.

Note
When BOOT is executed, the operating system is reloaded
and all programs that were in memory are erased.

Loading Other Operating Systems With BOOT

To load any other operating system, insert a CP/M system
disk containing BOOT.COM into the active drive. Type BOOT
in the following format,

BOOT [{number|M}]

and press the RETURN key. The number argument is the slot
number (4, 5, or 6) of the disk controller board connected to the
disk drive you are loading from. If you load the operating
system from drive A: or B:, the number can be omitted. (The
disk controller board for drives A: and B: is installed in slot 6.)

93

BOOT.COM
BOOT.COM
BOOT.COM

SoftCard II

The M argument allows you to boot from the Apple Monitor in
ROM. (The Apple Monitor is the Applesoft or Integer BASIC
interpreter in ROM.)

After you have pressed RETURN, the screen displays:

INSERT DISK AND PRESS RETURN TO REBOOT SYSTEM:

Insert the system disk into the appropriate drive. If you are
loading an Apple DOS 3.2 disk, press the 3 key. If you are
loading an Apple DOS 3.3 disk, press the RETURN key.

After you press the appropriate key, the operating system will
be loaded into memory. This will be indicated by a logon
message. For example, if you have a CP/M disk in drive A: (the
active drive), and want to load Apple DOS from drive B:, type

BOOT 6

and press RETURN. When the BOOT prompt appears on the
screen, press the RETURN key. Apple DOS 3.3 should be loaded
into memory and the following logon message is displayed:

APPLE][

DOS 3.3 VERSION 3.3 SYSTEM MASTER

JANUARY 1, 1984

COPYRIGHT APPLE COMPUTER INC., 1980, 1982

BE SURE CAPS LOCK IS DOWN

94

CP/M Commands and Utility Programs

CAT
The CAT utility program is similar to the DIR command. It
scans the directory of a disk to determine which files are on
that disk. The list displayed by CAT, however, is in alphabeti­
cal order and shows the size of each file and the amount of
remaining unused disk space (in kilobytes).

Displaying a Disk Directory

CAT, when used in the following format, scans the directory of
a disk in the specified drive and displays all the directory
entries (files) it finds.

CAT [d:]

Typing CAT without the d: argument scans the disk directory
of the active drive. For example, to scan the SoftCard Master
disk in the active drive, type

CAT

and press the RETURN key. The CAT program would display
the files as follows:

Total of 88K bytes in 19 files, 38K bytes available

APDOS .COM 2K | CONFIGIO BAS 7K I ED COM 7K PIP .COM 8K |
ASM COM 8K | COPY .COM 2K | GBASIC .COM 26K STAT COM 6K |
AUTORUN COM 1K | DDT COM 5K LOAD .COM 2K | SUBMIT .COM 2K |
BOOT COM 1K | DUMP .COM 5K MFT COM 2K XSUB .COM 1K |
CAT COM 1K DUMP .ASM 1K PATCH .COM 1K

Compare the result of the C AT command to that obtained by
the DIR command (see the “Built-in Commands” section of
this chapter).

To scan the directory of another drive, include the drive identi­
fier (d:) with the CAT command. For example,

CAT B:

scans the disk directory in drive B:. If no files are found, CAT
displays the message:

NO FILE

95

SoftCard II

Displaying Single and Multiple Disk Directory Entries

To find and display a specific file or files on a disk, type CAT
in the following format,

CAT filespec

and press the RETURN key. The filespec argument is the name
and location of the file or files sought. For example,

CAT B:GBASIC.COM

scans drive B: for the file GBASIC.COM. If the file is found,
CAT displays:

GBASIC.COM
Total of 26K bytes in 1 file, 38K bytes available

To search for a type of file, use wild card characters (? or *) in
the filename and extension part of the filespec argument.
(Wild card characters are explained in “CP/M Disk Files” in
Chapter 4.) Wild card characters also allow you to search for
files that begin with a certain letter or share a common name.
For example,

CAT A???.BAS

searches the disk directory of the active drive for all files
beginning with the letter A having between one and four
characters in the filename, with a filename extension of .BAS.
Another way to use a wild card character in a filename would
be to type

CAT *.C0M

which scans the active drive for all files with a .COM filename
extension.

96

B:GBASIC.COM
GBASIC.COM
GBASIC.COM

CP/M Commands and Utility Programs

Note
When CAT is used with drives other than Apple Disk][
drives (such as a hard disk), the displayed file size will
differ from that shown by the STAT program. CAT dis­
plays the actual size of the file, while STAT displays the
amount of space on the disk allocated by the file. The
latter figure may be larger.

COPY
COPY.COM is a utility program that copies and formats
CP/M disks. By using its software “switch” options, you can:

Format a disk with the /F switch.

Copy the contents of one disk onto another (no switch
needed).

Verify that the copied disk contents match the contents of
the original disk with the /V switch.

Create CP/M system disks with the /S switch.

Create CP/M data disks with the /D switch.

Like other utility programs, COPY can be used from CP/M
command level or from the COPY program level.

97

COPY.COM

SoftCard II

Formatting a Disk

Disk formatting prepares the disk to store data in a certain
format. Whenever CP/M system disks or data disks are cre­
ated, they are formatted automatically. This is also true if you
copy the entire contents of one disk onto another. To perform
the formatting function only, for just one disk, type the COPY
command line in the following format from CP/M command
level:

COPY d:/F

The d: argument specifies the drive of the disk to be formatted.
The /F is a software switch that instructs COPY to format the
disk only. For example,

COPY B:/F

formats the disk in drive B:.

To format disks from the program level, type COPY and press
RETURN. When you see the asterisk prompt, type:

d:/F

In either command, the formatting process is the same. If you
plan to format several disks at a time, use COPY from the
program level.

Copying CP/M Disks

The most common use of COPY is to copy the entire contents of
one disk to another. To copy disks from CP/M command level,
type the COPY command line in the following format:

COPY d:=s:[/V]

Press the RETURN key to execute the command. The d: argu­
ment is the destination drive (the drive you wish to copy to, A:
through D:). The s: argument is the source drive (the drive you

98

CP/M Commands and Utility Programs

are copying from, A: through D:). The /V switch is the “verify
copy” option. It instructs COPY to verify that no errors oc­
curred during the copying process. For example,

COPY B:=A:/V

copies the contents of the disk in drive A: to the disk in drive B:
and verifies the copy process by comparing the data contents
of the two disks.

To use COPY from the program level, type

COPY

and press the RETURN key to load the COPY program into
memory. When the asterisk prompt (*) appears, use the same
command line arguments as used at CP/M command level.
Pressing the RETURN key at program level executes the com­
mand. For example, if you first type COPY and press RETURN,
the command line

B:=A:/V

will perform the same copy process as in the previous example,
but it will be executed from the program level. When the copy
process has been completed, COPY returns to the program
level.

While the COPY program is running, it will give you instruc­
tions for each step of the copy process and status messages.
See the section entitled “Backing Up the SoftCard Master
Disk” in Chapter 3 for examples of screen instructions and
messages.

Note
You can use COPY with either a single-drive system or a
multiple-drive system. With a single-drive system, you
must specify the destination drive and the source drive as
the same drive.

99

SoftCard II

Creating CP/M System Disks

A CP/Msystem disk contains the CP/M operating system and
can be loaded into memory with a warm start or a cold start
from drive A:.

CP/M system disks created with the /S switch include only
the CP/M operating system software with the CP/M built-in
commands; they do not include CP/M utility programs. Util­
ity programs must be copied onto a CP/M system disk with the
MFT or PIP programs.

To create CP/M system disks, use COPY in the following
format:

COPY d:/S[/F][/V]

Press the RETURN key to execute the command. The d: argu­
ment is the destination drive (A: through D:). /S is a software
switch that instructs COPY to copy only the CP/M operating
system onto the first three tracks of the disk. The /F switch
formats the disk and the /V switch verifies the copy process.
For example,

COPY B:/S

copies the operating system software from the disk in drive A:
onto the disk in drive B:.

To use COPY from the program level, type

COPY

and press the RETURN key to load the COPY program into
memory. When the asterisk prompt (*) appears, use the same
command line arguments as used at CP/M command level.
Pressing the RETURN key at program level executes the com­
mand.

100

CP/M Commands and Utility Programs

Note
When you include the /S switch in the COPY command
line, COPY will format the disk if it hasn’t been format­
ted previously. If the disk is already formatted, the files
on the disk are not deleted unless the /F switch is used.

Creating CP/M Data Disks

Data disks are disks that have no operating system data on
them. They are used for the storage of programs and data files
only.

Important
You should avoid using data disks in drive A: and in
single-drive systems. The lack of an operating system on
data disks prevents CP/M from performing a warm start
and recovering from errors.

To create CP/M data disks, use COPY in the following format:

COPY d:/D[/F][/V]

Press RETURN to execute the command. The /D switch in­
structs COPY to create a data disk. As with the /S switch, if
the disk has been formatted, the files on the disk will not be
deleted unless the /F switch is used. If the disk is already a
CP/M system disk, the CP/M system is removed, and an addi­
tional 12K bytes of disk space is made available for programs
and data. The /V switch verifies the copy process.

101

SoftCard II

To create CP/M data disks from the program level, type

COPY

and press the RETURN key to load the COPY program into
memory. When the asterisk prompt (*) appears, enter the com­
mand line in the following format:

d:/D[/F][/V]

To execute the command line, press the RETURN key. The
arguments are used in the same manner as from CP/M com­
mand level.

MFT
MFT.COM is a utility program for copying files from one disk
to another. MFT is similar to the PIP program, but is designed
specifically for single-drive systems. It can be run from either
CP/M command level or from MFT program level.

Copying Files from CP/M Command Level

Before using MFT, make sure the file MFT.COM is on the
system disk you plan to use. To copy files at CP/M command
level, type MFT in the following format:

MFT filename.ext1 [,filename.ext2...]

The filename arguments following MFT are the names of the
files you want to copy. Wild card characters (? and *) can be
used in the filenames or filename extensions. The copy process
is started when you press the RETURN key. For example,

MFT /COM

copies all .COM files on the source disk to the destination disk
at CP/M command level.

While the MFT program is running, it will display instruc­
tions on the screen for changing disks. Whenever you want to
cancel the copy process, press CONTROL-C.

102

MFT.COM
MFT.COM

CP/M Commands and Utility Programs

Important
You must have a CP/M system disk in disk drive A: before
pressing CONTROL-C. CP/M initiates a “warm start”
whenever CONTROL-C is typed from the keyboard. If you
don’t have a CP/M system disk in the disk drive, CP/M
cannot restart itself and displays “A BDOS ERROR on
d: Bad Sector” on the screen.

Copying Files from MFT Program Level

To use MFT at the program level, type MFT and press the
RETURN key. When the MFT program is loaded into memory,
the screen displays the MFT program banner and the asterisk
prompt. At the asterisk prompt, type the MFT arguments in
the same manner as you would from the CP/M command level.
For example, if you load MFT and press RETURN, then type,

GBASIC.COM,CONFIGIO.BAS

MFT copies the GBASIC.COM and CONFIGIO.BAS files
from the source disk to the destination disk.

PATCH
PATCH.COM is a utility program for installing program up­
dates and modifications to the CP/M system modules.

The only time you should have to use PATCH is when you
receive explicit instructions from a software vendor, such as
Microsoft. If you wish to install your own modifications or
updates without instructions from a vendor, do so at your own
risk. General instructions for using PATCH are given in the
SoftCard II Programmer’s Manual.

103

GBASIC.COM
PATCH.COM

SoftCard II

PIP
PIP (Peripheral Interchange Program) is one of the most fre­
quently used CP/M programs. The primary purpose of PIP is
to transfer data between devices. Its most frequent use is in
copying files from one disk to another, but PIP can also be
used to:

Rename the destination file during the copy process

Copy files from different user areas to the active user
area

Append disk files (concatenation)

Merge disk files

Send data to an output device, such as a printer or termi­
nal

Copy data between I/O devices

The most commonly used functions are discussed in this sec­
tion. PIP can also be used as an aid in program development
and is discussed in Chapter 3 of the Osborne CP/M User Guide.

You can use PIP at CP/M command level or at the PIP pro­
gram level. From either level, the command line arguments are
the same. When PIP is executed from CP/M command level, it
returns to CP/M command level after executing the command
line. When executed from program level, it returns to the pro­
gram level after executing the command line. To exit PIP from
the program level, press CONTROL-C.

PIP can be aborted at any time by pressing the space bar or
any other key during the copying process. PIP confirms that
the process has been aborted by displaying the message
“ABORTED.”

104

CP/M Commands and Utility Programs

Copying Files From Disk to Disk

The most common use of the PIP program is to copy files from
one disk to another. To copy a file or files to another disk from
CP/M command level, type the PIP command in the following
format

PIP d’.[filespec] = [s:]filespec[p]

and press the RETURN key.

To copy files from the PIP program level, type PIP and press
RETURN. Then type:

d:filespec=s:filespec[p]

In both formats, the d: argument is the destination drive (the
drive you want to copy to) and the s: argument is the source
drive (the drive you are copying from). The filespec argument
is the file specification of the file or files you are copying from.
There is no need to include the destination filespec unless the
file is to be renamed. For example,

A: = B:ED.COM

copies the file ED.COM from drive B: to drive A: under the
same filename. If you want to rename a file, use the same
command line format as before, but specify a new filespec for
the destination file. For example,

PIP DOG.COIVROAT.COM

copies the file CAT.COM into a new file called DOG.COM on
the disk in the active drive.

You may also use wild card characters (* or ?) in the filespec
arguments to copy more than one file. The command line

PIP B: = *.BAS

copies all files on the disk in the active drive with the extension
of .BAS to the disk in drive B:.

105

B:ED.COM
ED.COM
DOG.COIVROAT.COM
CAT.COM
DOG.COM

SoftCard II

Note
If you plan to copy more than one file, use PIP from the
program level. This will save time and eliminate unnec­
essary keystrokes.

The optional [p] (parameter) argument modifies the copy pro­
cess or permits certain conditions to be set. If you include a
parameter argument, the square brackets must enclose the
parameter. For most disk to disk copy operations, parameters
are not needed.

If your disk system is divided into user areas, the [g] param­
eter can be used to copy files from a different user area into the
active user area. For example,

PIP A: = B:ARCH.BAS[g4]

copies the file ARCH.BAS from user area 4 in drive B: to the
active user area.

Important
You cannot have two files with the same filename on the
same disk or in the same user area.

106

CP/M Commands and Utility Programs

Copying Parts of a File

PIP can copy portions of a file when used with one of two pa­
rameters. PIP with the [Gstring CONTROL-Z] parameter copies
from the beginning of a file to the point denoted by the string
CONTROL-Z. The \Sstri.ng CONTROL-Z] parameter instructs PIP
to copy a file from string CONTROL-Z to the end of the file. The
brackets must be included. For example,

PIP B:=A:BIO.TXT[SA minute passed. CONTROL-Z]

copies from the point “A minute passed.” to the end of the
BIO.TXT file in drive A: and places the text in a file with the
same name in drive B:.

Appending Files

PIP can be used to append several text files to a destination
file (concatenation). Before files can be concatenated, there
must be sufficient space on the disk to copy the files into a
destination file.

To concatenate files, type PIP in the following format:

PIP [d:]dest=[d:]source1,source?...

Press RETURN to execute the command. The dest argument is
the destination file of the copy operation. The source arguments
are the source files. Commas must separate the source file
arguments. For example,

PIP BOOK.TXT=CHAP1 .TXT,CHAP2.TXT,CHAP3.TXT

copies the text files CHAP1.TXT, CHAP2.TXT, and CHAP3-
.TXT into the file BOOK.TXT on the active drive.

If you are concatenating text files, no parameters are needed.
If you are concatenating other types of files (e.g., hex files), an
H, I, or O must be included in the command line. For example,

PIP PLAN.HEX-P2A.HEX,P3A. HEX, P4A.HEX[H]

copies the three hex source files into the file PLAN.HEX. The
[H] parameter denotes a hexadecimal data transfer.

107

SoftCard II

Copying Files to a Printer

PIP can copy files to I/O devices. If a printer is connected to
the LST: logical device, a file can be sent to the printer.

To print a file, type the following command line:

PIP LST:-[d:]filespec[parameter]

Press RETURN to execute the command. For text files, add the
parameters [T8P60] to put the output data into the proper
format for printing. The T8 parameter substitutes tab stops
for spaces and the P60 parameter inserts form feed characters
every 60 lines. For example,

PIP LST:=BOOK.TXT[T8P60]

copies the file BOOK.TXT to the LST: device, and substitutes
eight spaces for each tab stop in the file and a form feed
command every 60 lines as it copies BOOK.TXT to the LST:
device.

Other Uses for PIP

PIP can also be used to copy data between devices, and for
copying between devices and files. For instructions on using
PIP for these tasks, see the Osborne CP/M User Guide.

108

CP/M Commands and Utility Programs

STAT
STAT.COM is the CP/M utility program for displaying status
information and changing device assignments. The functions
STAT performs are:

Displaying disk drive status

Displaying active disk and user area status

Displaying file status

Displaying device assignments

Changing device assignments

Assigning attributes to files and disks

Each of these functions is discussed in the following para­
graphs. STAT is executed from CP/M command level only.

Disk Drive Status

Use the following format to display the status and the amount
of free disk space in a specified disk drive:

STAT [d:]

For example,

STAT A:

displays the amount of free disk space for the disk in drive A:.

If you type STAT with no arguments, STAT will display the
amount of disk space remaining on the active drive and the
assigned attributes. For example, if you have the SoftCard
Master disk in drive A: and type STAT, you will see the follow­
ing display:

A: R/W, Space:20K

109

STAT.COM

SoftCard II

Active Disk and User Area Status

In the previous example, STAT displayed only the disk attri­
butes and the amount of free space remaining. To display the
statistical data for each disk drive or user area, use the follow­
ing command line format:

STAT {d:DSK:|USR:J

The DSK: argument permits you to display disk characteris­
tics of the active disk drive, and the USR: argument displays
the current and active user areas. For example,

STAT B:DSK:

displays:

B: Drive Characteristics
1120: 128 Byte Record Capacity

140: Kilobyte Drive Capacity
48: 32 Byte Directory Entries

128: Records/Extent
8: Records/Block

32: Sectors/Track
3: Reserved Tracks

Status Information About Files

To display status information about files, type

STAT files pec

and press the RETURN key. The filespec argument is the name
and location of the file or files you want status information on.
To obtain status information on more than one file at a time,
use wild card characters in the filespec. In either case, STAT

110

CP/M Commands and Utility Programs

will display the size of the file (or files) in both bytes and
records; the number of extents the file contains; the file attri­
bute set; and the filename itself. For example,

STAT DUMP.BAK

displays the size and attributes of the DUMP.BAK file on the
active drive in the following format:

Rees Bytes Ext Acc
33 5K 1 R/W A:DUMP.BAK

Bytes Remaining On A: 20K

Assigning Attributes to Files and Disks

You can use STAT to set certain conditions for accessing files
or disks. For example, you can make a file or disk a read-only
file (a file or disk that can be read from, but not changed).

To change the attributes of a file or disk, type

STAT {d:\fi lespec}$attri bate

and press RETURN. The attribute argument assigns one of the
attributes from the list below to the file or disk. For example,

STAT B:DOG.COM $R/O

assigns the Read-Only attribute ($R/O) to the file DOG.COM
on drive B:.

Attribute Explanation

$R/O (Read Only) Prevents writing to or deleting the
file.

$R/W (Read/Write) Allows writing to and deleting the
file. This attribute cancels $R/0.

$SYS (System) Prevents the display of file when the
DIR built-in command is invoked.

$DIR (Directory) Cancels the $SYS attribute.

Ill

B:DOG.COM
DOG.COM

SoftCard II

Assigning I/O Devices

One of the strong points of CP/M is that you can change the
I/O device assignment of your system without having to re­
member the exact slot assignment of each I/O device. CP/M
provides four logical device names that can be assigned to any
number of I/O devices by using the STAT program. (For an
explanation of physical and logical devices, see the section
entitled “I/O Communication” in Chapter 4.) To make device
assignments, type:

STAT log:=phy:

The log: argument is the logical device and phy: is the physi­
cal I/O device. For example,

STAT CON:=TTY:

assigns the physical device TTY: to the logical device CON:.

To see the possible device assignments for your system, type

STAT VAL:

and press the RETURN key. STAT displays the possible STAT
command arguments and device assignments. To see the cur­
rent device assignments, type

STAT DEV:

and press the RETURN key.

112

Index

Accessory boards
compatible, 14-18
safety & handling precautions,

13-14
Accessory slots, 15, 18
Active drive

changing, 78
definition of, 54

APDOS
BASIC file copy

procedure, 89-91
DOS data file copy

procedure, 86-87
DOS text file copy

procedure, 88-89
Apple

accessory slot assignments,
18, 69

Apple DOS files, 86-89
BASIC file copy procedure,

89-91
compatible accessory boards,

16-18
cursor movement keys, 66
disk controllers, 17
disk drives, 17
DOS file copy procedure, 86-91
DOS logon message, 94
Escape key sequences, 67
keyboard usage, 66
special function keys, 67

Application programs
definition of, 40
running, 71-72

Argument
definition of, 59
notation, 6-8

Assembly language
definition of, 39

AUTORUN
creating startup disks, 92
loading startup disks, 92

Basic Disk Operating System
(BDOS), 47

Basic Input and Output System
(BIOS), 47

BOOT
loading CP/M, 93
loading other operating

systems, 93-94
Boot disks, definition of, 53
Boot procedure, 25-27
Booting, definition of, 45
Bootstrap loader, 38, 42-44
Built-in commands

d:, 78
definition of, 58-59
DIR, 78-80
ERA, 80-81
execution of, 76-77
REN, 81
SAVE, 82
TYPE, 83-84
USER, 84-85

CAT
displaying a disk directory,

27, 95
displaying disk directory

entries, 96
Central processing unit (CPU),

38
Circuit board installation

procedure, 18-22
Cold start, 45, 91, 93
Command level, 46, 58, 76
Command line notation, 6-8
Command prompt (CP/M), 26
Computer system

central processing unit (CPU),
38

components of, 37-41
hardware, 38-39
I/O interface circuits, 39
internal memory, 38
memory, 38
operating system, 40-41
software, 39-40

113

Index

Console Command Processor
(CCP), 46-47, 58

CONTROL characters, 68
COPY

creating data disks, 101-102
creating system disks, 100-101
disk copy procedure, 97-99
disk format procedure, 98
making disk backup copies,

28-32
multiple-drive copy procedure,

31-32
single-drive disk copy

procedure, 29-30
summary of tasks, 97
switch options, 97

CP/M
active drive, 54
assigning physical devices,

112
Basic Disk Operating System

(BDOS), 47
Basic Input and Output

System (BIOS), 47
boot procedure, 25-27
bootstrap loader, 38, 44
built-in commands, 58-59
changing disks, 53
cold start, 45, 91, 93
command level, 58, 76
command prompt, 26
Console Command Processor

(CCP), 46-47, 58
control characters, 68
copying a disk, 98-99
creating a disk, 100-101
current device assignments,

114
cursor movement keys, 67
d: command, 78
data disks, 53, 101-102
device assignments, 50
DIR command, 78-80
disk drive identifier, 54
disk drive system, 51-53
disk files, 54-56
disk organization, 51-52
disk types, 52-53
ERA command, 80-81
Escape key sequences, 67

CP/M continued
extensibility of commands, 59
file types, 56
filename extension, 55-56
filenames, 55
filespecs, 54-55
formatting a disk, 98
I/O communication, 48-51
I/O device usage, 69
I/O interface, 39
line editing commands, 67
loading, 25-27
logical devices, 48-51, 112
logon display, 27
master disk files, 27
memory locations, 43
memory usage, 45-47
physical devices, 48-51, 112
PIP utility program, 104-108
print operations, 70-71, 83-84,

108
REN command, 81
running application programs,

71-72
SAVE command, 82
software modules, 45-47
special function keys, 67
STAT utility program, 50,

109-112
system disks, 52-53, 100-101
Transient Program Area

(TPA), 46
transient programs, 59-61
TYPE command, 83-84
USER command, 85
using Apple //e keyboard

with, 66
warm start, 45, 53, 68, 91
wild card file specifications

57-58
Currently logged drive, 54
Cursor movement keys, 67

d: command, 78
Data disk

copy switch, 101-102
creating, 101-102
definition of, 53

Delimiter, 55

114

Index

DIR
displaying a disk directory,

78-79
displaying disk entries, 79-80

Disk
backup procedures, 28-32
controllers, 17, 95
directories, 78-80, 95-96
drive identifier, 54
drive labels, 22
drives, 17
format procedure, 98
format switch, 100
types, 52-53

Driver assembly language
routine, 48

ERA
erasing a file, 80
erasing multiple files, 80-81

Extensibility of CP/M
commands, 59

External mass storage memory,
38

External terminals, 17-18

Features
hardware, 3-4
software, 4-5

File directories, 97
File naming conventions, 54-55
File size display, 97
Filename extension, 55-56
Filenames, 55
Filespecs, 54-55

General purpose I/O devices, 17

Handling precautions, 13-14
High-level languages, 40

I/O
Bus, 39
communication, 48-51
configuration, 32-33
general information, 32-33
interface, 39
interface circuits, 39

Installation procedure, 18-22
Internal memory, 38

Left-arrow cursor key, 28, 66
Licensing Information, Digital

Research, Inc., vii
Line editing commands, 67
Logical devices, 48-51, 112
Logon display, 27

Machine instructions, definition
of, 39

Memory-mapped I/O, 49
MFT

copying from command level,
102-103

copying from program level,
103

Microsoft
BASIC Interpreter, 5
BASIC Interpreter Reference

Manual, iv
License Agreement, iii
SoftCard II Programmer’s

Manual, iv
utility programs, 5, 86-112

Multiple-drive copy procedure,
31-32

Multiple-drive systems,
31-32, 79-81

Operating systems, role of, 40-41

115

Index

Package contents, 12
PATCH

usage, 103
Physical devices, 48-51, 112
PIP

appending files, 107
copying files from disk to disk,

105-106
copying files to a printer, 108
copying parts of a file, 107
other uses, 108
parameter argument, 107
summary of tasks, 104

Print operations, 70-71, 83-84, 108
Program level, 58, 76

Random Access Memory (RAM)
definition of, 38

Read Only Memory (ROM)
definition of, 38

REN
renaming files, 81

Safety precautions, 13-14
SAVE

saving memory contents in
disk file, 82

Shipping information, 12
Single-drive copy procedure,

29-30
Single-drive systems, 29-30,

102-103
Single file copy program, 102-103
SoftCard II system

AUTORUN utility program,
91

BOOT utility program, 93-94
command line notation, 6-8
COPY utility program, 29-32,

97-102
disk backup procedures, 29-32
documentation, iii-iv, 12
features, 3-5
Master disk

copying, 28-32
files, 12, 26-27

SoftCard II continued
package contents, 12
PATCH utility program, 103
system requirements, 11
utility programs, 5, 86-112
Z80 microprocessor, 3, 38, 41

Software
application programs, 40
assembly language, 39
booting, 45
CP/M, 41-61
disk sectors, 51-52
disk tracks, 51-52
high-level languages, 40
machine instructions, 39
modules, 45-47
operating systems, 40-41
programs, 39

Startup disks
creating, 92
definition of, 53,

STAT
assigning attributes to files

and disks, 111
assigning I/O devices, 50, 112
current device assignments,

112
displaying active disk and user

area status, 110-111
displaying disk drive status,

109
displaying status information

about files, 110-111
file and disk attributes, 111
possible device assignments,

112
summary of tasks, 109

System disks
creating, 100-101
definition of, 52-53

System requirements, 11

116

Index

Transient Program Area (TPA),
46

Transient programs, 59-61
TYPE

displaying a text file, 83
printing a text file, 83-84

Type-ahead buffer, 69

USER
changing the active user area

85
creating a user area, 85

Utility programs
APDOS, 86-91
AUTORUN, 91
BOOT, 93-94
CAT, 95-96

COPY, 97-102
execution notes, 76-77
MFT, 102-103
PATCH, 103
PIP, 104-108
STAT, 109-112

Warm start, 45, 53, 68, 91
Wild card file specifications,

57-58, 96

Z80 microprocessor, 3, 38, 41

80-column display boards, 4

117

Microsoft,
Soft Card. 11
for Apple® 11,][Plus, and //e Computers

Programmer’s Manual

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corpora­
tion. The software described in this document is furnished under a
license agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement. It
is against the law to copy any part of the software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser’s
personal use.

© Microsoft Corporation, 1983, 1984

If you have comments about this documentation or the enclosed soft­
ware, complete the Software Problem Report at the back of this man­
ual and return it to Microsoft.

Microsoft, the Microsoft logo, and A.L.D.S. are registered trademarks of Micro­
soft Corporation.
SoftCard and MS are trademarks of Microsoft Corporation.
Apple, the Apple logo, Silentype, and Applesoft are registered trademarks of
Apple Computer, Inc.
CP/M is a registered trademark of Digital Research, Inc.
MP/M is a trademark of Digital Research, Inc.
Intel is a registered trademark of Intel Corporation.
Z80 is a registered trademark of Zilog, Inc.
Videx and Videoterm are trademarks of Videx, Inc.
Hazeltine is a trademark of Hazeltine Corporation.
IQ is a trademark of Soroc Technology, Inc.
California Computer Systems is a registered trademark and 7710A is a trade­
mark of California Computer Systems, Inc.
Osborne is a registered trademark of Osborne Computer Corporation.

Document No. 8821-22X-00

11

Contents

Introduction

Further Reading vi
How to Use This Manual vii
Notation Used in This Manual ix
European Apple //e Differences x

1 Elements of CP/M 1

CP/M Memory Organization 3
CP/M Operation 7

2 Programming Considerations 19

Assembly Language Programming 21
6502 BIOS Calls 23
Using CP/M System Calls 25

3 CP/M System Calls 41

System Call Parameters 44

4 6502 BIOS 91

Installing User-Written Software in the 6502 BIOS 94
6502 BIOS Call Descriptions 99

5 Command Directory 117

Command and Utility Program Guidelines 119

• • •
111

Contents

6 I/O Configuration 159

CONFIGIO 161
Screen Function Interface 164
Keyboard Character Definition 178
Adding Nonstandard

t/O Devices and User Software 182
I/O Device Protocols for

Assembly Language Programs 192

Appendices

A Error Messages 195

B SoftCard Version Differences 209

C 80-Column Operation and the SoftCard II 215

Glossary 219

Index 229

iv

Introduction

This is the Programmer’s Manual for the Microsoft® SoftCard™
II system. It is designed to give you the information you need to:

Use the CP/M © operating system calls to perform I/O and
disk operations

Use 6502 BIOS calls to perform low-level I/O and disk
operations

Use the CONFIGIO program to modify your CP/M I/O
module for nonstandard I/O devices

Reference SoftCard utility programs, CP/M commands,
and utilities such as ASM, DDT, and ED

This manual is for system and application programmers who
plan to write or modify programs for the CP/M Apple® //e with
SoftCard programming environment. No tutorial information
is provided. We assume that you already know how to program
in either assembly language or another high-level language.

We also assume you have read the Microsoft SoftCard IIInstal­
lation and Operation Manual and are now familiar with the
CP/M operating system, its commands, and attendant utility
programs. Tutorial information about CP/M and its program­
ming utilities is given in the Microsoft SoftCard IIInstallation
and Operation Manual and the CP/M User Guide.

SoftCard II

Specifically, this manual is for users who want to:

Implement their own software routines in the 6502 BIOS
module

Write assembly programs that will run in the TPA area of
memory

Use CP/M system calls from within their program

Connect nonstandard devices to their system

Change the I/O configuration

Important
This manual does not show how to change the BIOS
module. If your application requires changing any of
CP/M system modules (other than the patch areas pro­
vided), we recommend purchasing the Digital Research
CP/M Technical Manual. Vendors needing more infor­
mation for interfacing their products to the SoftCard II
system should contact Microsoft Corporation directly.

Further Reading

If you would like to know more about programming, we suggest
you read any of the following:

Barbier, Ken. CP/M Assembly Language Programming.
Englewood Cliffs, NJ.: Prentice-Hall, 1983.

Spracklen, Kathe. Z-80 and 8080 Assembly Language
Programming. Rochelle Park, NJ.: Hayden Book Com­
pany, 1979.

Leventhal, Lance A. Z80 Assembly Language Program­
ming. Berkeley, CA.: Osborne/McGraw-Hill, 1979.

VI

Introduction

In addition to the books listed, there are several magazines and
magazine columns for CP/M programmers. Here are just a
few:

Microsystems. The CP/M User’s Journal. Ziff-Davis Pub­
lishing, New York, NY.

CP/M Review. CP/M Review Company, Mercer Island,
WA.

“SoftCard Symposium,” Softalk Magazine. Softalk Pub­
lishing, North Hollywood, CA.

“CP/M Exchange,” Dr. Dobb’s Journal. Peoples Comput­
er Company, Menlo Park, CA.

How to Use This Manual

This manual serves as: a reference manual for using CP/M
commands and programs, and a technical manual for program­
ming in the SoftCard II environment. Information in this Pro­
grammer’s Manual is organized into the following chapters
and appendices:

Chapter 1, “Elements of CP/M,” describes the different ele­
ments of CP/M and how it is organized.

Chapter 2, “Programming Considerations,” describes how to
use the CP/M system calls and provides other pertinent infor­
mation about programming in the Apple //e and SoftCard
environment.

Chapter 3, “CP/M System Cedis,” is a reference section for the
39 CP/M system calls. It includes a listing of the parameters
needed for each call.

SoftCard II

Chapter 4, “6502 BIOS,” is a reference section for the seven­
teen 6502 BIOS system calls.

Chapter 5, “Command Directory,” is a quick reference guide to
the CP/M commands and utility programs contained in the
SoftCard II system.

Chapter 6, “I/O Configuration,” explains the different I/O
functions and tells how to add I/O drivers to patch areas.

Appendix A, “Error Messages,” lists and explains the error
messages that may be encountered in using CP/M and its
utility programs.

Appendix B, “SoftCard Version Differences,” explains what
you should know about the SoftCard implementation of CP/M
and explains the differences between the standard or “generic”
implementation of CP/M version 2.2 and the SoftCard imple­
mentation, version 2.25.

Appendix C, “80-Column Operation and the SoftCard II” de­
scribes what you should know about using 80-column display
boards with SoftCard equipped Apple H computers.

“Glossary,” defines terms used in CP/M and SoftCard documen­
tation.

• • •
Vlll

Introduction

Notation Used in This Manual

This manual uses the same notation as the Microsoft SoftCard
IIInstallation and Operation Manual to demonstrate the differ­
ences between what you enter on the keyboard and what you
see in the manual. The following elements are used in this
manual to help you understand how commands are entered into
the computer.

ital Italics indicate information that you enter. Ital­
icized lowercase text is for an entry that you
must supply, such as a filename.

Square brackets indicate that the enclosed entry
is optional.

Braces indicate a choice between two or more
entries. At least one of the entries enclosed in
braces must be chosen, unless the entries are
also enclosed in square brackets.

CAPS

Vertical bars separate choices within braces.

Ellipses indicate that an entry can be repeated
as many times as needed or desired.

Capital letters not enclosed within the other
elements of syntax indicate portions of com­
mands that must be entered exactly as shown,
such as command keywords. Small capital let­
ters indicate that you must press a key named
by the text. For example, “press the RETURN
key.”

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

ix

SoftCard II Programmer’s Manual

European Apple //e Differences

On the European version of the Apple //e computer, the follow­
ing keys display symbols on the key face, instead of key names.

United States Version European Version

TAB —

RETURN *-

SHIFT t

In addition to these keys, the CONTROL key is labeled “CTRL”,
and the DELETE key is labeled “DEL”. The Installation and
Operation Manual and Programmer’s Manual refer to the keys
by their American key names.

The European Apple //e has two character sets: a standard
ASCII character set, and a character set indigenous to a par­
ticular country. You can switch between the character sets by
switching the toggle located under the righthand side of the key­
board.

Note
The Installation and Operation Manual and Programmer’s
Manual assume the toggle switch is set for the ASCII
character set. If it is not, some character substitutions
may appear on the screen.

x

Chapter 1
Elements of CP/M

CP/M Memory Organization 3
BIOS (Basic Input and Output System) 4
BDOS (Basic Disk Operating System) 4
CCP (Console Command Processor) 5
TPA (Transient Program Area) 5
System Parameters 5

CP/M Operation 7
I/O Communication and the IOBYTE 9
Disk Communication 14
The CP/M File Structure 16

1

Elements of CP/M

This chapter describes the different elements of CP/M as im­
plemented by the SoftCard II system.

CP/M Memory Organization

The SoftCard II version of CP/M (version 2.25) consists of
three software modules (the BIOS, BDOS, and CCP) and var­
ious system parameters. CP/M software resides on disk in
system tracks zero through two.

CP/M is loaded into the 64K of random access memory located
on the SoftCard circuit board. In memory, CP/M occupies the
locations shown in the following figure.

FFFFH

F900H

ECOOH

E300H

0100H

0000H

Figure 1.1.

BIOS
Basic Input Output System

BDOS
Basic Disk Operating System

CCP
Console Command Processor

TPA
Transient Program Area

System Parameters

CP/M Memory Organization

3

SoftCard II

BIOS (Basic Input and Output System)
The BIOS module in the SoftCard implementation of CP/M
has the following features added:

“Patch” areas for implementing additional software or for
interfacing nonstandard I/O devices

Entry points for using 6502 subroutines

Tables for modifying screen functions for different hard­
ware and software configurations

A table for redefining the ASCII values of the keys on the
keyboard

System calls to the 6502 BIOS

BDOS (Basic Disk Operating System)
The SoftCard implementation of CP/M uses the standard
CP/M BDOS module for system calls and other disk I/O rou­
tines. The standard 39 system calls of CP/M version 2.2 are
implemented through a jump table in the BIOS. (See Chapters
2 and 3 for more information on system calls.)

4

Elements of CP/M

CCP (Console Command Processor)
The SoftCard implementation of CP/M uses the standard
CP/M CCP module as an operator interface to the screen
monitor and keyboard.

The CCP can be overwritten by a program to gain an addi­
tional 2K bytes of memory if the program requires it. If the
CCP is overwritten by a program, it can be reloaded into
memory by pressing CONTROL-C.

TPA (Transient Program Area)
The TPA in the SoftCard version of CP/M occupies approxi­
mately 59K bytes of memory between the addresses shown in
Figure 1.1.

Programs that overwrite the CCP must end with a System
Reset, system call 0, or a JMP instruction to the BIOS entry
point (address 0000H).

System Parameters
The system parameter area of memory is initially loaded with
the cold start loader program and then used as a system work
area. Table 1.1 shows the location and contents of routines
stored in this area of memory.

5

SoftCard II

Table 1.1.
System Parameter Area Contents

Memory
Address Contents

0000H to 0002H Z80 jump vector to the BIOS jump table
(used during a warm start).

0003H IOBYTE address, which is a single byte
used for logical to physical device assign­
ment. See “I/O Communication and the
IOBYTE” in this chapter.

0004H A single byte which indicates the active
drive (drive a=0, b=l, c=2, and d=3). The
default value is 0 when loading the system
during a cold start.

0005H to 0007H The Z80 jump vector to the BDOS entry
point. It is used by transient programs when
making system calls to the BDOS.

0008H to 0037H Reserved for future use, but not used at this
time.

0038H to 003AH Vector address if a Restart 7 instruction is
encountered.

003BH to 003FH Reserved for future use, but not used at this
time.

0040H to 004FH Reserved for CP/M (See Chapter 4, “6502
BIOS”).

0050H to 005BH Reserved for future use, but not used at this
time.

005CH to 007CH Default File Control Block (FCB) for disk
operations. (See “The CP/M File Structure”
in this chapter.)

007DH to 007FH Default random record positions for the file
named in the FCB.

0080H to OOFFH Optional 128-byte disk buffer used during
disk file accesses. It is also used to store the
command line being entered when the CCP
is active.

6

Elements of CP/M

CP/M Operation

In most implementations of CP/M, operation is controlled by a
program running in the TPA section of memory or by com­
mands translated by the CCP from the keyboard. All program
instructions or commands from the CCP are executed by func­
tion requests to the BDOS module for one or more of 16 low-
level system functions called primitives.

A primitive function is an assembly language routine in the
BDOS module which performs a disk or I/O related task such
as reading a character from the keyboard or writing data to a
disk file. The 16 primitive functions are divided into two groups
called character I/O functions and disk I/O functions. The
following table outlines the functions.

CP/M Primitive Functions
Table 1.2.

Function Type Description

CONIN Character I/O Console input
CONOUT Character I/O Console output
CONST Character I/O Console status
HOME Disk I/O Seek track 0
LIST Character I/O List output
LISTST Character I/O List status
PUNCH Character I/O Punch output
READ Disk I/O Read disk sector
READER Character I/O Reader input
SETDMA Disk I/O Select memory range
SELDSK Disk I/O Select disk drive
SETSEC Disk I/O Seek disk sector
SECTRAN Disk I/O Convert logical sector

to physical sector
SETTRK Disk I/O Seek disk track
WBOOT Disk I/O System warm start
WRITE Disk I/O Write disk sector

7

SoftCard II

As described in Chapter 4 of the Microsoft SoftCard II Installa­
tion and Operation Manual, all nondisk I/O communication
takes place through the four logical devices: CON:, LST:, PUN:,
and RDR:. Character I/O functions transfer single-byte ASCII
characters between a logical device and a register in the central
processing unit. The logical devices are part of the software
translation interface between CP/M and the actual I/O devices.

Disk I/O functions are similar to character I/O functions but
are for transferring larger amounts of data (usually 128-byte
data blocks). These functions are described in “The CP/M File
Structure” later in this chapter.

Each of the primitive functions can be used either individually
or in combination with each other to perform the 39 function
requests known as system calls. All system calls are desig­
nated by a number and are executed by a Z80® CALL instruc­
tion. The Z80 CALL instruction is invoked from the CCP pro­
gram running in the TPA.

When system calls are executed, control of the computer is
passed to CP/M. CP/M executes the function called and then
returns control back to the program. For example, a program
calls for a character to be sent to the terminal. At the appro­
priate point in the program, the character to be sent and the
system call number are processed by the CPU, transferring
control to a specific function routine in the BDOS module of
CP/M. The function routine performs the tasks necessary to
cause the character to be displayed at the terminal. The last
instruction of the assembly language routine tells the CPU to
return control to the calling program immediately following
the system call.

*
The use of system calls gives CP/M programs the advantage of
portability. That is, a program can run on many different
computers without program modifications for each particular
computer.

8

Elements of CP/M

System operation of the SoftCard version of CP/M differs
slightly from the standard CP/M version 2.2 because the Z80
CPU uses the Apple 6502 as an I/O processor. Thus, any
system calls that require I/O operations will first transfer
control to the CP/M. The Z80 then “calls” the 6502 to execute
the appropriate set of instructions. For CP/M programs that do
not call 6502 routines directly, this entire process is “invisible.”
To use 6502 subroutines in your program, see “Calling 6502
Subroutines” in Chapter 2.

I/O Communication and the IOBYTE
CP/M communicates with nondisk I/O devices through four
logical devices. CP/M also communicates with nondisk I/O
devices through vector routines (known as physical devices)
and a translation routine, if needed.

The logical device (as opposed to an actual physical device) is
implemented by an assembly language subroutine that pre­
sents a logical representation of the I/O function. The logical
devices are named by function in the following list:

Console (CON:)

List (LST:)

Punch (PUN:)

Reader (RDR:)

Input and output to and from a con­
sole or terminal

Output to a listing device, such as a
printer

Output only

Input only

9

SoftCard II

A physical device is assigned to a logical device. A physical
device is addressed by a vector that points to a driver routine.
There are 12 physical devices; each corresponds to a specific
type of I/O device. Table 1.3, “Physical Device Descriptions,”
describes each of the physical devices, except for BAT:. See
“Logical to Physical Device Assignments” in Chapter 4 of the
Microsoft SoftCard II Installation and Operation Manual for
more information on the BAT: physical device.

Table 1.3.
Physical Device Descriptions

Device Description

TTY: The TTY: device communicates with the standard Apple
screen monitor and keyboard if slot 3 is empty. It com­
municates with an external terminal or 80-column video
display board if there is an interface board installed in
slot 3. The TTY: routes communication through Console
Input Vector #1 and Console Output Vector #1. The con­
sole status is always input through the Console Status
Vector.

CRT: The CRT: device is defined the same as the TTY: device.
A substitution patch routine must be written to redefine
the device and its location before it can be used.

UC1: UC1: is user-defined console device. It routes commun­
ication through Console Input #2 and Console Output
#2. A substitution patch routine must be written to
define the device and its location before it can be used.

PTR: PTR: points to a standard Apple interface board capa­
ble of processing input from accessory slot 2. If slot 2 is
empty, the PTR: device always returns a 1AH (end-of-
file character) in register A, when called. Input from
PTR: is through Reader Input Vector #1. Characters are
returned in the A register.

10

Elements of CP/M

Table 1.3 (continued)

Device Description

UR1: UR1: is user-defined reader device #1. A character read
from this device is returned in the A register. Input is
through Reader Input Vector #2. A substitution patch
routine must be written to define the device and its loca­
tion before it can be used.

UR2: UR2: is user-defined reader device #2. This device has
the same definition as UR1:.

PTP: PTP: is any standard Apple interface board capable of
processing output from accessory slot 2. If slot 2 is
empty, the PTP: device does nothing when called. Out­
put to the PTP: device is through Punch Output Vector
#1. A substitution patch routine must be written to
define the device and its location before it can be used.

UP1: UP1: is user-defined punch device #1. The character in
register C is output through Reader Input Vector #2. A
substitution patch routine must be written to define the
device and its location before it can be used.

UP2: UP2: is user-defined punch device #2. This device has
the same definition as UPL.

LPT: LPT: is any standard Apple interface board installed
into slot 1 capable of receiving output. The character in
register C is output through List Output Vector #1.

ULI: ULI: is a user-defined list device. The character in reg­
ister C is output through List Output Vector #2. A sub­
stitution patch routine must be written to define the
device and its location before it can be used.

Because there are four logical devices, only one physical device
can be assigned to a logical device at a time. The IOBYTE is
used by CP/M to monitor and change the current logical to
physical device assignments.

11

SoftCard II

The IOBYTE is a single byte located at memory address 0003H
that is divided into four two-bit fields. The fields represent each
of the logical devices as shown in the following figure.

Field
Bits

LST: PUN: RDR: CON:
7—6 5—4 3—2 1—0

Figure 1.2. The IOBYTE at Address 0003H

The value of the bits determines which physical device is as­
signed to the logical device. Table 1.4 lists the possible
IOBYTE assignments.

Table 1.4.
IOBYTE Device Assignments

Bit
Value

Fields

LST: PUN: RDR: CON:

00 TTY: TTY: TTY: TTY:
01 CRT: PTP: CRT: CRT:
10 LPT: UP1: PTR: BAT:
11 ULI: UP2: UR2: UC1:

12

Elements of CP/M

The SoftCard implementation of the IOBYTE is based on
memory mapping of the seven accessory slots. Slots one
through three are initially mapped to the LPT:, PTR:, and
TTY: devices, respectively. To implement other physical de­
vices, substitution I/O routines must be written into the I/O
patch area of the BIOS. See “Adding Nonstandard I/O De­
vices and User Software” in Chapter 6 for more information.

Usually, the IOBYTE is changed with the STAT transient
program. Programs, however, can also change the IOBYTE
through two character I/O calls: Get IOBYTE, system call 7,
and Set IOBYTE, system call 8. “I/O Device Assignment
Calls” in Chapter 2 describes how to use these system calls.

Physical devices are implemented as addresses in memory that
point to a vector which in turn, points to an address of an
accessory board. Of the 12 physical devices, only three are
mapped to an accessory board address. The other nine are
either undefined or route communication to one of the imple­
mented devices. See Table 1.3 for descriptions of the physical
devices.

To use one of the unimplemented devices, a special driver
routine must be written in one of the patch areas in the BIOS.
Instructions on how to use the patch areas are given in “Adding
Nonstandard I/O Devices and User Software” in Chapter 6.

13

SoftCard II

Disk Communication
Disk communication is performed through a set of nine primi­
tive functions, that, like the I/O primitive functions, can be
called either individually or in combination with each other to
perform higher-level functions. CP/M provides some of the
higher-level functions through the numbered system calls that
are standard in CP/M. The disk I/O functions are similar to
character I/O functions but are for transferring larger amounts
of data.

The File Control Block

Because the data transferred is larger than the capacity of the
CPU registers, CP/M sets up two areas of memory to transfer
data and parameters between the calling program and the
disk. The first area is called the disk data buffer, and is used
for disk read and write operations. It can be located anywhere
in memory and occupies 128 bytes. The second area is called
the File Control Block (FCB). It is used to pass parameters
which control the disk I/O transfer between the disk and CP/M.

The FCB consists of 36 bytes and can be located anywhere in
memory. It is usually located at memory address 005CH. The
FCB is used for the same purpose as the CP/M registers for
passing parameters.

The FCB format is shown in Figure 1.3. Each field in the FCB
must contain the appropriate parameter before a disk I/O sys­
tem call can be executed. The calling program provides the
information in the first four fields to identify the file to be
accessed. The dO—dn field is used by the BDOS module to keep
track of the file contents.

14

Elements of CP/M

Field
Bits

dr fn type ex s1—s2 rc dO—dn cr rO—r1 r2
0 1—8 9—11 12 13—14 15 16—31 32 33—34 35

Figure 1.3. File Control Block

dr Is the drive code. It identifies the drive in
which the file is located.

fn Is the filename. If the filename is less than
nine characters, the remaining bytes in the
field are padded with blanks.

type Is the file type (filename extension). If the
extension is less than three characters, the
remaining bytes are padded with blanks.

ex Is the current file extent number (the number
of the extent that is being accessed). It is nor­
mally set to 0, but ranges between 0 and 31
during file I/O operations.

si—s2 Is reserved for system use. s2 is set to zero
during OPEN, MAKE or SEARCH opera­
tions.

rc Is the record count or current extent size (0 to
128 records).

dO—dn Is the disk allocation map. This field is filled
in and used by CP/M.

cr Is the current record number (the current rec­
ord to be read or written in sequential file oper­
ations).

rO—rl Is the random record number. The random
record number (0—65535) is a 16-bit value with
byte rO as the lower 8 bits and byte rl as the
upper 8 bits.

r2 Is the overflow byte for the random record num­
ber.

15

SoftCard II

The CP/M File Structure
Chapter 4 in the Microsoft SoftCard IIInstallation and Opera­
tion Manual explains how a disk is organized into tracks and
sectors. In CP/M terminology, each 128-byte disk sector is
called a record. A disk file contains up to 65,536 records and is
organized into blocks of records called extents.

All CP/M files contain one or more extents. An extent consists
of 128 records (16K bytes). Extents allow CP/M to keep track of
the physical location of the records for each file in conjunction
with another unit of organization called allocation blocks.

To keep track of the sector’s physical location on the disk, the
disk is divided into allocation blocks. An allocation block con­
sists of 8 sectors or 1024 bytes of data.

Note
The SoftCard version of CP/M uses a 5-1/4 inch disk as
its primary storage medium. These disks have a total
capacity of MOK bytes (or 128 sectors) of storage space.
Since the CP/M system modules are stored in the first
three tracks (0, 1, and 2) of the disk, the first allocation
block starts with track 3, sector 1. (Tracks are numbered
0—35 and sectors are numbered 1—31.) The allocation
blocks are consecutively numbered until the last sector on
the disk (track 35, sector 31) has been included in an
allocation block. Thus, on a 5-1/4 inch disk, there can be a
total of 16 allocation blocks.

16

Elements of CP/M

When a disk file requires additional space, an allocation block
is assigned to the file through the extent field of the FCB. This
gives the file an additional 1024 bytes of storage space although
it may only require 64 bytes at the time. For example, if a file
contains 16 records, and a disk write operation adds a seven­
teenth record, CP/M assigns a new allocation block to the file.
The new allocation block will contain file records 17 through 24
even though only record 17 is currently written.

An extent can have up to 16 allocation blocks assigned to it.
The number of each allocation block assigned to an extent is
stored in the dO—dn field of the FCB (bytes 16—31), where one
byte equals one allocation block.

CP/M keeps a table of all allocation blocks in memory. When­
ever a file requires an additional allocation block, CP/M as­
signs the next available allocation block to the FCB of the file
and updates the table in memory. CP/M also reclaims alloca­
tion units as a file decreases in size or is deleted. By assigning
and reclaiming allocation blocks, CP/M dynamically manages
the storage space on the disk. This permits the records that
make up a file to be placed in random locations on the disk.

CP/M also keeps track of the files on disk through the disk
directory. The directory is stored at track 3, sector 1, and
contains an entry for each extent of each file on the disk. If a
file has more than one extent assigned, the disk directory will
have multiple entries for that file.

17

SoftCard II

Note
When the DIR built-in command is executed, the CCP
reads the disk directory but only displays the first oc-
curence of each file.

Each directory entry is a copy of the first 32 bytes of the FCB
for that given extent. As shown in File Control Block format,
the first 32 bytes contain the filename, file type, the extent, and
allocation block map of the extent. In the SoftCard version of
CP/M, there is space allocated for 48 directory entries. Since
each directory entry takes up 32 bytes, the directory takes up
the first two allocation blocks of the data storage space.

18

Chapter 2
Programming Considerations

Assembly Language Programming 21
Programming Tools Provided 21
Instruction and Register Differences 22
Instruction Execution Time 22

6502 BIOS Calls 23
Guidelines for Use 23

Using CP/M System Calls 25
Calling From an
Assembly Language Program 25
Assembly Language Program Example 26
Calling From a High-Level Language 31
Calling 6502 Subroutines 31
Returning Control to the CCP 31
Interrupt Handling 31

19

I/O Device Calls 32
Other Console Device System Calls 34
Buffered Console System Calls 34
I/O Device Assignment Calls 35
Creating Files 35
Deleting Files 35
Opening and Closing Files 36
Searching for a File 37
File Read and Write Operations 37
Miscellaneous System Calls 39

20

Programming Considerations

This chapter describes the assembly language programming
tools included with the SoftCard II system. It also provides
guidelines for using CP/M system calls within your programs.

Assembly Language Programming

With the SoftCard II system you may use either 8080A or Z80
assembly language programs. Although the SoftCard circuit
board is designed around a Z80 microprocessor, most 8080A
assembly language programs can be run by the SoftCard sys­
tem without modifications. There are, however, several 8080A/
Z80 compatibility characteristics that you should be aware of.
These are discussed in the following sections.

Programming Tools Provided
Programming tools are software programs which permit the
programmer to write and run an assembly language program
or subroutine for a specific programming environment. The
SoftCard II system includes the following CP/M programming
tools that are standard in most CP/M implementations:

ED CP/M text editor

ASM 8080 assembler

DDT 8080 Dynamic Debugging Tool

DUMP Hex dump program

LOAD 8080 load program

SUBMIT/XSUB Batch command files

21

SoftCard II

Some of these programs are for the 8080A microprocessor only.
Because the Z80 microprocessor uses a different set of mne­
monics for instructions, the ASM, DDT, and LOAD program
cannot be used with Z80 programs. The ED, DUMP, and
SUBMIT/XSUB programs can be used with either instruction
set.

To use the Z80 instruction set, a Z80 assembler and LOAD
program are needed. The Microsoft Assembly Language De­
velopment System (A.L.D.S.®) contains the necessary pro­
gramming tools in addition to several programs designed for
the assembly language programmer. A.L.D.S. is available sepa­
rately from Microsoft.

Instruction and Register Differences
A Z80 microprocessor can use the P flag of the F (Flags) regis­
ter to indicate two’s complement overflow after arithme­
tic operations. An 8080A microprocessor will always use this
flag for parity.

The DAA instruction is executed differently by the Z80 and
8080A. The Z80 DAA instruction corrects decimal subtraction
as well as decimal addition. The 8080A DAA instruction only
corrects decimal addition.

Z80 “rotate” instructions, when executed, clear the AC flag in
the F register. The 8080A “rotate” instructions do not.

Instruction Execution Time
The time it takes to execute an instruction differs for the 8080A
and the Z80 microprocessors. In addition, the Z80B microproc­
essor executes instructions three times faster than its prede­
cessors. 8080A and Z80A programs that depend on precise
timing loops should be rewritten for the faster execution speed
of the Z80B.

22

Programming Considerations

6502 BIOS Calls

The Z80 performs I/O operations through the 6502 microproc­
essor by accessing a set of 17 function request routines called
the “6502 Basic Input Output System,” or 6502 BIOS. The
6502 BIOS calls were implemented as a means of accessing the
Apple 6502 memory when running CP/M programs.

6502 BIOS calls are accessed by storing information in a
seven-byte area located between memory addresses 0045H—
004BH, and then performing a Z80 CALL instruction to mem­
ory location 0040H. Information from the I/O system is re­
turned in the same seven-byte area.

6502 BIOS calls should be used only when there is a need to
access the 6502 memory for Apple specific functions such as
game ports, 6502 subroutines, or routines for creating music.
Programmers should use CP/M system calls whenever pos­
sible.

Guidelines for Use
W

To use 6502 BIOS calls in programs, the following protocol
must be observed. The protocol governs the passing of infor­
mation between the 6502 BIOS and the calling CP/M program.

1. Enter the 6502 call number in location 49H.

2. Store the needed parameters in the indicated memory
location.

3. Perform an assembly language CALL instruction to loca­
tion 40 H.

4. If applicable, read the returned information from the indi­
cated memory location.

23

SoftCard II

6502 BIOS Call Example

The following example shows how a 6502 BIOS call is made.

•SUBROUTINE TO READ THE VALUE OF PADDLE
;ZERO INTO REGISTER A.

;DEMONSTRATES 6502 SUBROUTINE CALLING
CONVENTIONS AND PARAMETER PASSING.

XREG EQU 46H
YREG EQU 47H
CMD EQU 49H
ADDR EQU 4AH
X6502 EQU 40H
GOSUB EQU 0
PADDLE EQU 0FB1EH
PDL: XRA A

STA XREG
LXI H,PADDLE
SHLD ADDR
MVI A,GOSUB
STA CMD
CALL X6502
LDA YREG
RET

;X register pass area
;Y register pass area
;6502 BIOS command
;Place to store 6502 sub address
;6502 transfer address
CMD 0—GOSUB 6502
location of paddle routine
;Set for paddle zero
;XREG=paddle number
;Address of monitor routine
;Set the address
;We want to execute a 6502 subroutine
;Set the command
Call the routine
;Get the paddle value
;Home, James

24

Programming Considerations

Using CP/M System Calls

The following section describes how to use the CP/M system
calls from your program.

Calling From an Assembly Language Program
To use CP/M system calls in programs, the following protocol
must be observed. The protocol governs the passing of informa­
tion between CP/M and the calling program in the TPA.

1. The calling program must enter the number of the system
call in register C of the CPU.

2. For single-byte output data, the calling program must
place the data byte in register E.

3. 16-bit data is either sent or read to a pair of registers
(usually registers DE) by the calling program. See Chap­
ter 3 for specific information about each system call.

4. Data longer than 16-bits is placed in an area of memory
called a parameter block. The address of the parameter
block is placed in the DE or HL register pair.

5. The calling program must issue a CALL 0005 instruction
or equivalent.

6. The calling program reads register A for single-byte input
values.

25

SoftCard II

Assembly Language Program Example
The following assembly language program demonstrates how
system calls are used in a typical program. The program reads
characters from the Apple //e keyboard, and writes them to a
specified file until CONTROL-Z is typed. It then closes the file
and returns to CP/M command level. The program is written
in 8080 assembler code.

Example Notes

To demonstrate different program concepts, the example pro­
gram performs some unnecessary steps and also lacks several
features to make it useful. For example, it only displays the
characters that you type (including carriage returns and con­
trol characters). To make the program useful, modify the loop
section to check for a carriage return entered from the key­
board. If a carriage return is entered, the program would then
display and write a linefeed (ASCII OAH) immediately follow­
ing the carriage return.

Another problem is the backspace character. Most often, a
backspace is used to move the cursor back to a typing error,
and the error is corrected. This appears to work properly on the
screen, but the program is unnecessarily writing the error
character followed by the backspace character to your file.

26

Programming Considerations

Running the Example

To use the program once it is assembled and loaded, type:

SAMPLE FILENM

and press RETURN. The FILENM may be any filename you
choose. The Console Command Processor (CCP) will put the
filename into the default File Control Block located at memory
address 005CH.

Example Listing

;Sample program FILENM

BDOS EQU 5 Equate BDOS to represent memory location
0005H. This is the address that the program
jumps to when it requests a function from
CP/M. Any reference to BDOS in this
program now refers to 5.

;CP/M system call numbers used in this program.

GETCH EQU 1 ;System call 1 gets character from console
DISTRNG EQU 9 jSystem call 9 prints an ASCII string
CLOSFL EQU 16 ;System call 16 closes a file
KILLFL EQU 19 jSystem call 19 deletes a file
WRITE EQU 21 ;System call 21 writes sequential
BLDFIL EQU 22 ;System call 22 creates a file

FOB EQU 005CH ;Address of default File Control Block
DMA EQU 0080H ;Address of default disk buffer

;Begin actual code

ORG 0100H

LXI SP,STACK

;Tell loader to locate the program at 100H.
;Th is is the location used for almost all
;CP/M programs.

;Set up stack pointer for this program.
;STACK is actually an address defined in
;the data area that follows.

27

SoftCard II

BLDOK:

;Create file

LXI D,FCB
J
;Load the D and E registers with the FCB
;address. (Since this is a 16-bit operation,
;the higher-order byte of the FCB is in the D
register.)

MVI C,KILLFL ;Before creating the file we must make sure
;that it doesn’t already exist. Function 19
jdeletes an existing file of the same name.

PUSH D ;Save address of the FCB in case the call
;destroys it.

CALL BDOS
J
;Ki 11 file if the file is there.
;Normal procedure would be to check if
function was successful, but we don’t care
;with this function.

POP
MVI
CALL

D
C,BLDFIL
BDOS

;Restore D from stack (previously PUSHed).
;Select build file routine.
;Call CP/M to create file.

CPI 255 ;Compare contents of register A with 255 to
indicate if the build file failed from a lack of
jdirectory space or a similar problem.

JNZ BLDOK ;Jump if not zero—if previous compare
joperation yielded a zero, then a match was
;found and file not built. If not zero, then file
;was built.
J

;File build error—display message then quit

LXI B,BLDERR
J
;Load D register with error message
jaddress.

MVI
CALL

C.DISTRNG
BDOS

;Select display string CP/M function (9).
;Call CP/M to perform function.

JMP QUIT ;Jump to the quit label that returns to
;CP/M.
1

;Build OK--Set up for input

LXI D.DMA ;Load D and E registers with address of
;default DMA area.

MVI B,O
J
;Set character counter to zero.

LXI H.DMA ;Set up memory pointer to DMA area
;(H and L).

28

Programming Considerations

;Loop to input characters

LOOP: MVI C.GETCH ;Load C register with 1 (get character from
keyboard).

PUSH B
»
;Save BE register pair.

PUSH H ;Save H and L register pair.
CALL BDOS ;Request CP/M to get a character.
POP H ;Restore HL.
POP B ;Restore BE.

CPI 26 ;Compare A register against 26
;(control-z).

JZ CLOSE ;lf equal then zero flag set and jump is
performed to close routine.

MOV M,A
J
;Move character just typed from A register
;to memory address pointed to by M
;(H and L regs).

INX H
J
Jncrement memory pointer (HL) for next
;character.

INR B Jncrement character count (INC and INX
;perform same function but INC deals with
;8 bits, INX deals with 16).

MOV A.B
»
;Move contents of B to A register.

CALL 128
J
;Has there been 128-bytes written since last
jwrite?

JNZ LOOP
»
Buffer not full—get another character.
»

;Write DMA buffer to disk
J

LXI D,FCB ;Load DE registers with address of FCB.
MVI C,WRITE ;Select write function.
CALL BDOS ;Request CP/M to write 128 bytes to disk.
CPI 0 ;Check if successful (A=O means yes).
JNZ WRTERR Jf not zero then error occurred.
MVI B,0 ;Reset character counter since last write.
LXI H,DMA ;Reload memory address of buffer area.
JMP LOOP ;Get another character and continue.

WRTERR: LXI D.WRTERM
J
;Load DE with address of write error
;message.

MVI C.DISTRNG
»
;Select display string function.

CALL BDOS ;Call CP/M to display string.
JMP QUIT ;Jump to quit program.

29

SoftCard II

; Write last sector then close file

CLOSE MOV M,A

MVI C,WRITE
LXI D,FCB
CALL BDOS
CPI 0
JNZ WRTERR
LXI D,FCB
MVI C.CLOSFL
CALL BDOS

;A contains control-z (end-of-file marker).
;Move to disk transfer area.
;Select CP/M write function.
;Load DE register with address of FCB.
;Write DMA buffer to disk.
;Check if A register equals 0.
;Jump if not zero to write error routine.
;DE must point to FCB.
;Select CP/M close file function.
;Request CP/M to perform close.

;All done—Return to CP/M (CCP)

QUIT JMP 0 ;Perform warm start.

;Data used

;This section reserves some areas of memory for work space
;and initializes some areas with data (error messages, etc).

J

BLDERR: DB ‘CANNOT BUILD FILE$’

;Put that value in memory with the address
referenced by BLDERR. The $ tells the
;print string function when to quit printing
;data.

WRTERM DB‘DISK WRITE ERRORS’

DS 32

STACK:

END

;Same as previous except for write error.
J

;Reserve 32 bytes for stack data.

;This doesn’t actually do anything with the
;stack or stack pointer until the address of
;this data (STACK) is loaded into the stack
ipointer (SP). Notice that the label appears
;after the reserved data. This is because the
;STACK decrements towards 100H.
»

;Tell assembler we are through.

;End of program

30

Programming Considerations

Calling From a High-Level Language
System calls can be used from any high-level language whose
interface modules can be linked with assembly language rou­
tines. (The interface module translates the high-level lan­
guage’s assembly language routine protocol to the CP/M pro­
tocol.) For specific information on how to implement system
calls for a particular language, see the language’s user manual
or equivalent. For the Microsoft BASIC Interpreter, this infor­
mation is contained in Appendix E, “Microsoft BASIC Assem­
bly Language Subroutines” of the Microsoft BASIC Interpret­
er Reference Manual.

Calling 6502 Subroutines
6502 subroutines (assembly language subroutines executed by
the 6502 microprocessor) can be called from a CP/M program
through the 6502 BIOS call 0, CALLSUB. For instructions and
more information on this call, see Chapter 4.

Returning Control to the CCP
Programs which run in the TPA, and do not use the memory
reserved for the CCP, can return control to the CCP using a
RET assembly language instruction. Otherwise, System Reset,
system call 0, is used by programs to execute a warm start and
return system control to the CCP. This call is identical in
operation to executing a JMP 0000 instruction, which is the
way most programs execute a warm start.

Interrupt Handling
Z80 interrupts are not supported on SoftCard II. 6502 inter­
rupts can be used in programs by ending the interrupt process­
ing routine with a 6502 RTI instruction.

31

SoftCard II

I/O Device Calls
The five system calls listed in Table 2.1 provide basic commu­
nication with I/O devices other than the disk drive system.

Basic I/O Communication System Calls
Table 2.1.

Name Call Purpose

Console Input 1 Reads a character from the assigned
Console device.

Console Output 2 Sends a character to the assigned
Console device.

Reader Input 3 Reads a character from the assigned
Reader device.

Punch Output 4 Sends a character to the assigned
Punch device.

List Output 5 Sends a character to the assigned
Listing device.

Because of the dual microprocessor programming environ­
ment, use of the five basic I/O communication system calls are
dependent on current logical device assignment. Initially, all
four logical devices are assigned to the TTY: physical device.
However, each of the logical devices can be assigned to one
other implemented physical device. If reassigned, this can
affect the operation of the system call.

32

Programming Considerations

Note
Although there are 16 possible physical devices available,
only the TTY: and one alternate physical device (per logi­
cal device) are implemented initially. “I/O Communica­
tion and the IOBYTE” in Chapter 1 explains the reasons
and the technical details for this. The rest of this discus­
sion addresses the effect the alternate physical device
assignment has on the system calls.

The Console system calls (Console Input, system call 1, and
Console Output, system call 2) transfer single characters be­
tween the Console device and the CPU. Usually, the Console
device is assigned to the TTY: physical device, which is nor­
mally the Apple monitor and keyboard. If, however, an inter­
face board is installed in slot 3, that board becomes the TTY:
physical device and console I/O is routed to slot 3. It is possible
to have an interface board installed in slot 3 and still have the
Apple keyboard and monitor as the TTY: device. “Adding Non­
standard I/O Devices and User Software” in Chapter 6 gives
information on how to change the slot assignment.

The alternate device assignment for the Reader device (PTR:)
and for the Punch device (PTP:) both route information to
accessory slot 2. If the PTR: device is assigned, Reader Input
will return information from that slot. The same is true for
Punch Output if the PTP: device is assigned.

List Output always returns information from slot 1 if the LPT:
device is assigned.

33

SoftCard II

Other Console Device System Calls
CP/M provides two other system calls for direct access to the
console. (Direct access is defined as accessing the Console
device without buffering or CP/M line editing commands.) Get
Console Status, system call 11, determines if a character has
been entered at the physical device assigned to the console. If a
character has been entered, CP/M enters OFFH in register A. If
no character has been entered, register A contains 00.

The other call for direct access to the console is Direct Console
I/O, system call 6. This permits programs to communicate
directly with the Console device in special applications where
normal console I/O would cause problems with the program.
System call 6 differs from the other system calls by supporting
both input and output. If register E contains the value OFFH,
then CP/M assumes input is being requested from the console
and returns the next character in register A. If register E
contains any other value, then CP/M assumes output is being
requested, and sends the value, contained in register E, to the
Console device.

Buffered Console System Calls
The SoftCard implementation of CP/M also supports buffered
I/O. Buffered I/O is the input and output of character strings
through the assigned Console device. Print String, system call
9, and Read Console, system call 10, permit programs to input
or output a string of characters with one system call, instead of
using a separate system call for each character.

34

Programming Considerations

I/O Device Assignment Calls
The IOBYTE is used by CP/M to monitor and change the
current logical to physical device assignments. (For more infor­
mation on IOBYTE, see the section “I/O Communication and
the IOBYTE” in Chapter 1.) Two system calls are provided to
manipulate the IOBYTE: Get IOBYTE, system call 7, and Set
IOBYTE, system call 8. The Get IOBYTE call returns the cur­
rent value of the IOBYTE in register A, and the Set IOBYTE call
changes the IOBYTE value. The IOBYTE values and the cor­
responding device assignment are listed in “8 Set IOBYTE”
in Chapter 3.

Creating Files
Files are created with Make File, system call 22. Make File
creates a directory entry for the file. Once a file has been
created, it can then be accessed by a program or the CCP. As
the file requires additional storage space, CP/M will automati­
cally create new directory entries for each new extent as re­
quired. This eliminates the need for subsequent Make File
system calls every time the file size requires another extent.

Deleting Files
Files are deleted from the disk with the Delete File system call.
Delete File erases all directory entries for the specified file on
the disk, and thus reclaims the file’s allocation units.

35

SoftCard II

Opening and Closing Files
Before a file can be accessed for either read or write operations,
CP/M must know where the file’s physical location is on the
disk and the number of extents. The Open Call system call
provides this information by copying the disk directory infor­
mation from the disk and into the FCB in memory.

Before an Open File call can be executed, the FCB must con­
tain the filename in the filename field, and zeros in all other
fields. After the Open File call is issued, the remaining fields
are filled with data corresponding to the allocation block map
for that particular file.

CP/M will update the FCB allocation block map in memory, as
it reads or writes new data to the file. After a read or write
operation, the new allocation block map is written back into
the disk directory with Close File, system call 16. This is
required to prevent data from being lost.

Note
Read operations do not change the FCB allocation unit
map in the disk directory. It is good programming prac­
tice, however, to close all files after read operations.

36

Programming Considerations

Searching for a File
To find out if a file exists on disk, Search For First, system call
17, is used. System call 17 returns a zero in register A if the file
named in the FCB is found on the disk and an FF value if the
file is not present. To find ambiguous filenames, wild card
characters can be used in the filename field of the FCB. If one
or more “?” characters are encountered in the filename, the call
will return a 00 value for the first filename that matches. To
find other files that match, Search Next File, system call 18,
must be used. Search Next File returns a 00 value for each file
that matches the filename and FF if no matches are found.

File Read and Write Operations
When a file has been opened, data can be read from or written
to the file. CP/M supports two types of read/write operations:
sequential access and random access.

Sequential Access

Sequential read or write operations access successive records
of an open file. When a file is opened, each successive read or
write operation reads or writes the next record in the file. CP/M
automatically updates the record number (byte 32 of the FCB)
of the accessed file every time a Read or Write system call is
performed. A program can set the initial extent and record to
be read by setting bytes FCB 12 and 32 to the desired values.
This permits sequential reading anywhere in the file without
having to read all of the previous records.

The disadvantage of sequential access is that it is very time
consuming and requires that the records following the written
record be read and rewritten. Because of this limitation, se­
quential access is rarely used.

37

SoftCard II

Random Access

Random access read and write operations access records that
are in random locations on the disk. The SoftCard version of
CP/M supports full random access records, whereas earlier
versions of CP/M support only a limited version of random
access.

Note
Programs using random access methods (using the se­
quential read/write commands) written under CP/M ver­
sion 1.4 are permitted with the SoftCard version of CP/M.

The random access system calls (Read Random, Write Ran­
dom, and Set Random Record) have two enhancements which
make true random access possible. The first is that records do
not have to be contiguous, and the second is the ability to
convert record numbers from 1 to 65536 into the proper extent/
record designations. This frees the program from having to
convert records. To maintain compatibility with earlier ver­
sions, CP/M version 2.2 places the random access record num­
ber in the rO—r2 field of the FCB.

Note
The read/write sequential calls will only update the ex­
tent and record bytes in the FCB and not the random
access record number bytes.

38

Programming Considerations

Miscellaneous System Calls
Several other disk I/O system calls are provided for using the
CP/M file structure in certain situations. They are used to
initialize or interrogate certain disk functions.

The most commonly used of these is Set DMA, system call 26.
Set DMA sets the disk I/O buffer to the 128-byte block of
memory beginning with the address contained in the DE regis­
ters. (The SoftCard version of CP/M uses memory locations
0080 to OFF, but any 128-byte block of memory can be used.)
Use Set DMA to change the buffer location in memory.

The remaining system calls are used mainly by CP/M to imple­
ment the various disk-related functions specified by the CP/M
utilities.

39

Chapter 3
CP/M System Calls

System Call Parameters 44
0 System Reset 45

Console Input 46
2 Console Output 47
3 Reader Input 48
4 Punch Output 49
5 List Output 50
6 Direct Console I/O 51
7 Get IOBYTE 52
8 SetlOBYTE 53
9 Print String 55

10 Read Console Buffer 56
11 Get Console Status 58
12 Return Version Number 59
13 Reset Disk System 60
14 Select Disk 61
15 Open File 62
16 Close File 64

41

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
40

Search for First 65
Search for Next 66
Delete File 67
Read Sequential 68
Write Sequential 69
Make File 70
Rename File 71
Return Login Vector 72
Return Current Disk 73
Set DMA Address 74
Get Addr Alloc 75
Write Protect Disk 76
Get Read/Only Vector 77
Set File Attributes 78
Get Addr Disk Parms 79
Set/Get User Code 80
Read Random 81
Write Random 83
Compute File Size 85
Set Random Record 87
Reset Drive 89
Write Random With Zero Fill 90

CP/M System Calls

This chapter numerically lists the 39 CP/M system calls sup­
ported by the SoftCard II system. A listing of the system calls
is shown in the following table. Guidelines for using CP/M
system calls are given in “Using CP/M System Calls” in Chap­
ter 2.

Table 3.1.
CP/M System Calls Available

Call
Number Name

Call
Number Name

0 System Reset 20 Read Sequential
1 Console Input 21 Write Sequential
2 Console Output 22 Make File
3 Reader Input 23 Rename File
4 Punch Output 24 Return Login Vector
5 List Output 25 Return Current Disk
6 Direct Console I/O 26 Set DMA Address
7 Get IOBYTE 27 Get Addr Alloc
8 Set IOBYTE 28 Write Protect Disk
9 Print String 29 Get Read/Only
10 Read Console Vector

Buffer 30 Set File Attributes
11 Get Console Status 31 Get Addr Disk Parms
12 Return Version 32 Set/Get User Code

Number 33 Read Random
13 Reset Disk System 34 Write Random
14 Select Disk 35 Compute File Size
15 Open File 36 Set Random Record
16 Close File 37 Reset Drive
17 Search for First 40 Write Random With
18 Search for Next Zero Fill
19 Delete File

43

SoftCard II

System Call Parameters

In each of the system call descriptions, a table of parameters
shows the required parameters, and into which registers they
are loaded. The parameters in each table are:

Entry point The system call number and the reg­
ister it is loaded into.

Entry value The data to be sent to the CPU for
processing.

Returned value The data returned by the CPU as a
result of the system call.

For example, the following table shows the value returned in
register A which contains either an ASCII character or zero,
depending on how the call was executed.

Parameter Register Contents

Entry point C 06H
Entry value E OFFH (input) or character (output)
Returned value A Character or OOH

In addition to the parameter table, a remarks section describes
any special conditions or singularities for using the system
call.

44

CP/M System Calls

0 System Reset

Purpose

Performs a warm start.

Parameters

Parameter Register Contents

Entry point C OOH
Entry value None None
Returned value None None

Remarks

System Reset instructs CP/M to perform a warm start. (This is
the same as JMP instruction to location OOH.) Specifically,
System Reset performs the following actions:

Reinitializes the disk drive system by selecting drive A:
as the active drive

Reads the CCP module into memory from the disk in
drive A:

Initializes all I/O devices that have an initialization rou­
tine

Clears the contents of the disk file buffer

Transfers control to the CCP module

45

SoftCard II

1 Console Input

Purpose

Reads an ASCII character from the logical Console device.

Parameters

Parameter Register Contents

Entry point c 01H
Entry value None None
Returned value A Character from the Console device

Remarks

Console Input reads the next character from the physical device
assigned to the Console (CON:) device into register A. If a
carriage return, linefeed, backspace, or graphic character is
read, Console Input “echoes” the character back to the Console
device for display. If a tab character (CONTROL-I) is read, the
cursor is moved eight spaces to the next tab stop.

Console Input also checks for CONTROL-S (start/stop scroll),
and CONTROL-P (start/stop printer echo). If CONTROL-P is pres­
ent, all subsequent characters are echoed to the logical LST:
device. Control is not returned to the calling program until the
next character is entered from the Console device.

A subsequent CONTROL-P will disable echoing of characters to
the printer.

46

CP/M System Calls

2 Console Output

Purpose

Sends an ASCII character to the logical Console device.

Parameters

Parameter Register Contents

Entry point C
Entry value E
Returned value None

02H
A character
None

Remarks

Console Output sends a character to the logical Console device
from register E. If a tab character (CONTROL !) is sent, up to
eight blanks are output to move the cursor to the next tab stop.
Console Output also checks for CONTROL-S (start/stop scroll),
and CONTROL-P (start/stop printer echo).

47

SoftCard II

3 Reader Input

Purpose

Reads a character from the current logical Read device
(RDR:).

Parameters

Parameter Register Contents

Entry point C
Entry value None
Returned value A

03H
None
A character

Remarks

Reader Input reads into register A the next character from the
physical device assigned to RDR:. As in system call 1, Console
Input, control is not returned to the calling program until a
character has been read.

48

CP/M System Calls

4 Punch Output

Purpose

Sends an ASCII character to the logical Punch device (PUN:).

Parameters

Parameter Register Contents

Entry point c 04H
Entry value E ASCII character
Returned value None None

Remarks

Punch Output sends an ASCII character to the logical Punch
device (PUN:) from register E. Control is not returned to the
calling program until the character has been sent.

49

SoftCard II

5 List Output

Purpose

Sends an ASCII character to the logical List device (LST:).

Parameters

Parameter Register Contents

Entry point
Entry value
Returned value

C 05H
E ASCII character
None None

Remarks

List Output sends an ASCII character to the logical List device
(LST:) from register A. Control is not returned to the calling
program until the character has been sent.

50

CP/M System Calls

6 Direct Console I/O

Purpose

Initiates direct console I/O.

Parameters

Parameter Register Contents

Entry point c 06H
Entry value E FFH (input) or character (output)
Returned value A Character or OOH

Remarks

Direct Console I/O initiated in register E either contains a
value of FFH for console input request, or an ASCII character
for output. Upon return, if the value in register E was FFH,
register A will contain OOH. Otherwise, register A will contain
the next input character from the console.

Note
We do not recommend using Direct Console I/O, since it
bypasses all of CP/M’s normal control character func­
tions, such as CONTROL S and CONTROL-P. Programs which
perform direct I/O through the BIOS under previous re­
eases of CP/M, however, should be changed to use direct

I/O under BDOS so they can be fully supported under
future releases of MP/M™ and CP/M.

51

SoftCard II

7 Get IOBYTE

Purpose

Returns the current value of the IOBYTE.

Parameters

Parameter Register Contents

Entry point C
Entry value None
Returned value A

07H
None
I/O byte value

Remarks

The IOBYTE determines the logical to physical device assign­
ment. The IOBYTE value can be displayed at the Console de­
vice by using system call 2, Console Output.

52

CP/M System Calls

8 Set IOBYTE

Purpose

Changes the logical to physical device assignment.

Parameters

Parameter Register Contents

Entry point c 08H
Entry value E New I/O byte value
Returned value None None

Remarks

Set IOBYTE permits changing the IOBYTE value within pro­
grams running in the TPA. The IOBYTE format is shown in
the following table. Table 3.2 also shows the possible values of
the IOBYTE.

53

SoftCard II

Table 3.2.
IOBYTE Values

Field
(Bits)

Decimal
Value Description

Console xxxO TTY: assigned (Default)
xxxl CRT: assigned
xxx2 Batch (BAT:) mode
xxx3 UC1: assigned

Reader xxOx TTY: assigned (Default)
xxlx CRT: assigned
xx2x PTR: assigned
xx3x UR2: assigned

Punch xOxx TTY: assigned (Default)
xlxx PTP: assigned
x2xx UP1: assigned
x3xx UP2: assigned

List Oxxx TTY: assigned
lxxx CRT: assigned
2xxx LPT: assigned (Default)
3xxx ULI: assigned

54

CP/M System Calls

9 Print String

Purpose

Sends a character string to the logical Console device.

Parameters

Parameter Register Contents

Entry point C
Entry value DE
Returned value None

09H
String address
None

Remarks

Print String sends a character string from the address con­
tained in register pair DE to the logical Console device. Char­
acter strings must end with a character. If the character
string contains tab characters, they are expanded in the same
manner as in system call 1, Console Input. Print String also
checks for CONTROL-S (start/stop scroll) and for CONTROL-P
(printer echo).

55

SoftCard II

10 Read Console Buffer

Purpose

Reads the contents of the Console device buffer.

Parameters

Parameter Register Contents

Entry point c OAH
Entry value DE Buffer address
Returned value Buffer Console characters

Remarks

Read Console Buffer reads the edited input from the Console
logical device into the buffer address specified in register pair
DE. (The buffer address is determined by the calling program.)
Input is terminated when either the buffer overflows (maxi­
mum 255 characters), or a terminating character (carriage
return or linefeed) is read into the buffer. The Read Console
Buffer is in the following format:

Byte
Field

0 1 2 3 4 5 6 7 8 n
mx nc d c2 c3 c4 c5 c6 c7 cn

Figure 3.1. Console Buffer

mx Equals 255 characters (the buffer’s maximum
capacity).

nc Equals the number of characters read (set by
FDOS upon return).

cl—cn Equals the characters read from the Console
device.

56

CP/M System Calls

If nc is less than mx, the uninitialized positions follow the last
character (cn).

Input to the buffer can be edited with the following line­
editing commands:

Note

CONTROL-C Performs a warm start (if entered at the
beginning of line)

CONTROL-E Denotes the end of the line

CONTROL-H Backspaces one character position

CONTROL-J Terminates the input line (linefeed)

CONTROL-M Terminates the input line (carriage return)

CONTROL-R Retypes the current line after a new line

CONTROL-X Backspaces to the beginning of the current
line

Line editing commands which move the cursor to screen
column 0 (e.g., CONTROL-X) will only move the cursor to
the column position where the screen prompt ended. This
allows for a more legible display. (In earlier CP/M ver­
sions, the cursor was returned to the column 0.)

57

SoftCard II

11 Get Console Status

Purpose

Monitors the logical Console device for input.

Parameters

Parameter Register Contents

Entry point C
Entry value None
Returned value A

OBH
None
Console status value

Remarks

If CON: sends a character, register A will contain FFH. Other­
wise, register A contains OOH.

58

CP/M System Calls

12 Return Version Number

Purpose

Returns the CP/M version number.

Parameters

Parameter Register Contents

Entry point c OCH
Entry value None

*
None

Returned value HL Version number

Remarks

Return Version Number provides a means of programming that
is not version dependent. When called, Return Version Number
returns a two-byte value representing the version number in
register pair HL. The value in register H indicates CP/M
(H=00H) or MP/M (H=01H). The value in register L indicates
the version of CP/M as follows:

L=00H All releases prior to 2.0
L=20H CP/M 2.0
L=21H CP/M 2.1
L=22H CP/M 2.2

Return Version Number is useful for writing application which
provide both sequential and random access functions. (Ran­
dom access is disabled for CP/M releases prior to 2.0.)

59

SoftCard II

13 Reset Disk System

Purpose

Resets the disk system from within a program.

Parameters

Parameter Register Contents

Entry point C ODH
Entry value None None
Returned value None None

Remarks

Reset Disk System resets the disk drive system from within a
calling program. This is useful for application programs that
require a disk change without a warm or cold start.

When called, Reset Disk System assigns all drives with read or
write only attributes and makes disk drive A: the active drive.
It also sets the default DMA address to BOOT+OO8OH. (See
system calls 28, Write Protect Disk, and 29, Get Read/Only
Vector, for more information on read and write only attributes.)

60

CP/M System Calls

14 Select Disk

Purpose

Changes the active drive.

Parameters

Parameter Register Contents

Entry point C
Entry value E
Returned value None

OEH
Selected disk
None

Remarks

Select Disk changes the current active disk drive to the drive
represented by the value in register E. The value of register E is
as follows:

E=00H Drive A:
E=01H Drive B:
E=02H Drive C:
E=03H Drive D:

When selected, the active drive is placed “on-line,” which acti­
vates its directory in memory until the next cold start, warm
start, or disk system reset operation is performed. If the disk is
changed while it is on-line, the drive’s status is changed to
read/only status (see system call 29, Get Read/Only Vector).

During file operations, an FCB which contains 00 for the drive
code will automatically access the active drive. Drive codes one
through three ignore the active drive and access the selected
drive (A: through D:).

61

SoftCard II

15 Open File

Purpose

Opens an existing file.

Parameters

Parameter Register Contents

Entry point c OFH
Entry value DE FCB address
Returned value Directory code

Remarks

Open File searches the disk directory in the current user area
for a filename that matches the name in the FOB contained in
register pair DE. Wild card characters (? and *) can be used in
the fn and type fields of the FOB. If no wild card characters are
included, bytes ex and s2 of the FOB are set to zero. See “The
File Control Block” in Chapter 1 for a description of the FCB
fields.

62

CP/M System Calls

If the FCBs match, the relevant file directory information from
the disk is copied into the dO—dn field of the addressed FCB.
This allows access to the file through subsequent read and
write system calls.

Note
Existing files should not be accessed until a successful
open operation is completed.

When a file has been opened, Open File returns the directory
code with the value zero through three in register A. Otherwise,
Open File returns OFF in register A. If there are wild card
characters in the addressed FCB, then the first matching direc­
tory FCB is selected. If the file is to be accessed sequentially
from the first record, the calling program must set the current
record (cr) field to zero.

63

SoftCard II

16 Close File

Remarks

Purpose

Closes an existing open file.

Parameters

Parameter Register Contents

Entry point c 10H
Entry value DE FCB address
Returned value Directory code

Close File closes an existing open disk file in the current user
area. If the file was opened using an Open File or Make File
system call, Close File records the file’s new FCB information
in the referenced disk directory. The FCB matching process for
the Close File system call is identical to the Open File system
call. When a file is closed, the directory code in register A is OH,
1H, 2H, or 3H. Otherwise, OFFH is returned if the filename
cannot be found in the directory.

If a file has been written to, it must be closed in order to update
the FCB of the file. A file need not be closed for read operations.

64

CP/M System Calls

17 Search for First

Purpose

Searches for the first file match.

Parameters

Parameter Register Contents

Entry point C 11H
Entry value DE FCB address
Returned value A Directory code

Remarks

Search for First searches the disk directory of the current
active user area for the first filename matched by the addressed
FCB. If found, Search for First returns a value between OH
and 3H in register A. Otherwise, FFH is returned if the file is
not found.

When the addressed file is found, Search for First writes the
matching directory entry and the relative starting position
into the current DMA address. This is not normally required
for application programs, but it permits the directory informa­
tion to be obtained from the DMA buffer by the calling program.

The ? wild card character can be used in FCB fields fl—f8,
tl—tn, and ex to match the corresponding field of a directory
entry on the active drive. If the dr field contains a question
mark (?), however, the active disk select function is disabled
and the default drive is searched. Search for First will then
return any matched entry, allocated or free, belonging to any
user number. This is not normally used by application pro­
grams, but permits greater flexibility to search all current
directory entries. If the dr field is not a question mark, the s2
byte is automatically set to zero.

65

SoftCard II

18 Search for Next

Purpose

Searches for the next file match.

Parameters

Parameter Register Contents

Entry point C
Entry value None
Returned value A

12H
None
Directory code

Remarks

Search for Next is similar to the Search for First system call,
except that the directory search continues from the last matched
entry. If a match is found, Search for Next returns a value
between OH and 3H in register A. OFFH is returned when no
more directory items match.

66

CP/M System Calls

19 Delete File

Purpose

Deletes a file or files.

Parameters

Parameter Register Contents

Entry point C
Entry value DE
Returned value A

13H
FCB address
Directory code

Remarks

The FCB in register pair DE may contain wild card characters
(? or *) in the fl—f8 and tl—13 fields, but notin the dr field (as
in the Search for First and Search for Next system calls).

If the file(s) exist and can be deleted, Delete File-returns a
value between OH and,3H in register A. If the file(s) cannot be
found, a value of OFFH is returned.

67

SoftCard II

20 Read Sequential

Purpose

Reads a record sequentially.

Parameters

Parameter Register Contents

Entry point C
Entry value DE
Returned value A

14 H
FCB address
Directory code

Remarks

Read Sequential reads the next 128-byte record from the ad­
dressed file into memory at the current DMA address. Before
Read Sequential can be used, the FCB in register pair DE must
be activated through system call 15, Open File, or system call
22, Make File. If the FCB is present, Read Sequential reads the
next 128-byte record from the file into memory at the current
DMA address. The record’s location is read from the FCB cr
(current record) field of the extent, and the value of cr is auto­
matically incremented to the next record position. If the cr field
overflows, the next logical extent is automatically opened and
the cr field is reset to zero in preparation for the next read
operation.

Read Sequential returns a value of OOH in register A when the
operation has been completed, and a non-zero value if no data
exists at the next record position until the end of the file is
reached.

68

CP/M System Calls

21 Write Sequential

Purpose

Writes data to a file sequentially.

Parameters

Parameter Register Contents

Entry point C 15 H
Entry value DE FCB address
Returned value A Directory code

Remarks

Write Sequential writes the next 128-byte record to the address­
ed file at the current DMA address. Write Sequential can be
used only if the FCB address in register pair DE has been
activated through system call 15, Open File, or system call 22,
Make File. If the FCB is present, Write Sequential writes the
next 128-byte data record to the open file from the current
DMA address. The cr field of the addressed FCB is automat­
ically incremented to the next record position. If the cr field
overflows, the next logical extent is automatically opened and
the cr field is reset to zero to prepare for the next write opera­
tion. Records written into an existing file overlay those which
already exist in the file.

When the write operation has been completed, Write Sequen­
tial returns a value of OOH in register A, or a non-zero value for
an unsuccessful write operation due to a full disk.

69

SoftCard II

22 Make File

Purpose

Creates or “makes” a new file.

Parameters

Parameter Register Contents

Entry point C 16H
Entry value DE FCB address
Returned value A Directory code

Remarks

Make File is similar to the Open File system call, except that
the FCB must not contain a filename of an existing file in the
active disk directory. When executed, Make File also creates
the file and initializes both the FCB disk directory and the
FCB in memory.

Make File returns a value between OH and 3H in register A if
the file was created, and OFFH if no more directory space was
available to create the file. Make File also activates the FCB, so
a subsequent open operation is not necessary for writing to the
file.

70

CP/M System Calls

23 Rename File

Purpose

Renames an existing file.

Parameters

Parameter Register Contents

Entry point C
Entry value DE
Returned value A

17H
FCB address
Directory code

Remarks

Rename File changes the filename and extension in the first 16
bytes of the addressed FCB to the filename and extension in
the second 16 bytes. The FCB drive code (dr) selects the drive,
while the drive code for the new filename in dO (byte 16) is
assumed to be OH.

Rename File returns a value between OH and 3H in register A
when the file is renamed. If the file cannot be renamed, Rename
File returns a value of OFFH.

71

SoftCard II

24 Return Login Vector

Purpose

Writes the CP/M login vector into register pair HL.

Parameters

Parameter Register Contents

Entry point c 18H
Entry value None None
Returned value HL Login vector

Remarks

CP/M returns a 16-bit login vector value in register pair HL.
The least significant bit position in register L denotes the first
drive (A:), and the most significant bit position in register H
denotes the fourth drive (drive D:). “0” bit indicates that the
drive is off-line, while a‘T’ bit indicates the drive is on-line.
Drives can be brought on-line by an explicit disk drive selec­
tion, or by an implicit drive selection caused by a file operation
which specified a non-zero dr field.

Note
To maintain compatibility with earlier CP/M releases,
registers A and L contain the same values upon return of
the call.

72

CP/M System Calls

25 Return Current Disk

Purpose

Indicates the current active drive.

Parameters

Parameter Register Contents

Entry point C 19H
Entry value None None
Returned value A Current disk

Remarks

Return Current Disk returns a value in register A that corre­
sponds to the current active drive. The possible values in regis­
ter A are as follows:

OH
1H
2H
3H

Drive A:
Drive B:
Drive C:
Drive D:

73

SoftCard II

26 Set DMA Address

Purpose

Changes the default DMA address.

Parameters

Parameter Register Contents

Entry point c 1AH
Entry value DE DMA address
Returned value None None

Remarks

Set DMA Address changes the default DMA address. DMA
(Direct Memory Address) is a method of transferring data
directly between memory and the disk subsystem. In CP/M,
the DMA address is the address of the 128-byte data record
before a disk write operation, or after a disk read operation
occurs.

When a cold start, warm start, or disk system reset operation is
performed, the DMA address automatically resets to 0080H.
The DMA address can be changed with the Set DMA Address
call to access another area of memory where data records
reside. The DMA address specified in register pair DE remains
unchanged until the next Set DMA Address call, cold start,
warm start, or disk system reset operation is performed.

74

CP/M System Calls

27 Get Addr Alloc

Purpose

Returns the allocation vector base address of the active drive.

Parameters

Parameter Register Contents

Entry point C 1BH
Entry value None None
Returned value HL Allocation vector address

Remarks

Note

CP/M maintains an allocation vector in memory for each on­
line disk drive. Programs such as STAT and PIP use the in­
formation provided by the allocation vector to determine the
amount of remaining storage.

Allocation vector information can be invalid if the selected
drive has a read only attribute. Get Addr Alloc is not nor­
mally used by application programs.

75

SoftCard II

28 Write Protect Disk

Purpose

Sets write-protect status on the active drive.

Parameters

Parameter Register Contents

Entry point c 1CH
Entry value None None
Returned value None None

Remarks

Write Protect Disk sets a temporary write-protect attribute on
the active drive which disables write operations. The attribute
is removed by the next cold or warm start.

76

CP/M System Calls

29 Get Read/Only Vector

Purpose

Determines which drives have the temporary read/only bit set.

Parameters

Parameter Register Contents

Entry point C 1DH
Entry value None None
Returned value HL R/O vector value

Remarks

Get Read/Only Vector determines which drives have the tem­
porary read/only bit set through a 16-bit vector in register HL.
The least significant bit position in register L denotes the first
drive (A:), and the most significant bit position in register H
denotes the sixteenth drive (P:). A “0” bit indicates that the
drive is R/W, while a “1” bit indicates the drive is R/O. The
R/O bit is set either by system call 28, Write Protect Disk, or
automatically by CP/M when it detects a changed disk.

77

SoftCard II

30 Set File Attributes

Purpose

Sets file attributes from a program.

Parameters

Parameter Register Contents

Entry point C 1EH
Entry value DE FCB address
Returned value A Directory code

Remarks

Set File Attributes allows a program to change attributes of
the file specified by the addressed FCB. Specifically, this sys­
tem call either sets or resets the read only and system attri­
butes in the FCB tl—12 field. When called, Set File Attributes
searches for a matching FCB, and changes the matched direc­
tory entry to contain the selected attributes.

Note
Although the FCB indicators fl’ through f4’ are not cur­
rently used, they can be useful for application programs,
(fl and f4 are not involved in the matching process during
file open and close operations.) Indicators f5’ through f8’
and t3’ are reserved for future system expansion.

78

CP/M System Calls

31 Get Addr Disk Farms

Purpose

Reads the address of the disk parameters into register A.

Parameters

Parameter Register Contents

Entry point C 1FH
Entry value None None
Returned value A DPB address

Remarks

Get Addr Disk Parms returns the address of the BIOS disk
parameter block in register pair HL. This address can be used
for the following purposes:

1. To get the disk parameter values for display

2. To compute the amount of free disk space

3. To change the current disk parameter values

Normally, application programs will not require the use of this
system call.

79

SoftCard II

32 Set/Get User Code

Purpose

Reads or changes the current user code.

Parameters

Parameter Register Contents

Entry point C
Entry value E
Returned value A

20H
OFFH (get) or user code (set)
Current code or OFFH (no value)

Remarks

Set/Get User Code allows an application program to read or
change the current user number. To read the current user num­
ber, register E must contain the value OFFH. Set/Get User
Code will return the value of the current user number (0 to 15) in
register A. If the value in register E is not OFFH, then the
current number is changed to the value of E (modulo 32).

80

CP/M System Calls

33 Read Random

Purpose

Reads a record using random (direct) access.

Parameters

Parameter Register Contents

Entry point C 21H
Entry value DE FCB address
Returned value A Return code

Remarks

Read Random is similar to system call 20, Read Sequential,
except that the read operation takes place at the record number
selected by the rO—r2 field of the FCB. Read operations only
use bytes rO and rl. (Byte r2 is used only in computing the size
of a file. See system call 35, Compute File Size, for more infor­
mation on computing the size of a file.)

The rO—rl byte pair contains the value corresponding to the
record to be read. The value range of rO—rl (OH to 65535H) can
access any particular record of an eight-megabyte file. Byte r2
must be set to zero, since a non-zero value indicates overflow
past the end of the file.

Before a file can be read with a Random Read call, it must be
opened with either an Open File or Make File system call. This
ensures that the information in the file’s FCB is read into the
FCB contained in the DE register pair. When the file is opened,
the selected record number is read into the FCB record field
(rO—rl), and then Read Random can read the record. When the
call is completed, register A contains either the value OOH to
indicate a successful read operation, or an error code.

When the read operation has been completed, the current DMA
buffer will contain the data of the selected record.

81

SoftCard II

The FCB record number is not incremented by the system call.
This differs from a Read Sequential system call where the
record number is incremented. By not incrementing the record
number, subsequent Read Random system calls continue to
read the same record.

After each Read Random call, the logical extent and current
record values are automatically set to the appropriate values to
allow the file to be sequentially read or written, starting from
the current randomly accessed position. The random record
position can be advanced optionally by the program following
each random read or write operation to obtain the effect of a
sequential I/O operation.

Note
The first Read Sequential call after a Read Random call
rereads the record in the DMA buffer.

The following error codes are returned in register A, if the read
operation was unsuccessful:

01H Reading unwritten data
03H Cannot close current extent
04H Seek to unwritten extent
06H Seek past physical end-of-disk

Error codes 01H and 04H occur when a random read operation
accesses a data block which has not been previously written,
or an extent which has not been created. These are equivalent
conditions. Error code 03H does not normally occur under
proper system operation, but can be cleared by simply reread­
ing, or reopening extent zero as long as the disk is not physi­
cally write-protected. Error code 06H occurs whenever byte r2
contains a non-zero value under the current CP/M version 2.0
release. Normally, non-zero return codes can be treated as
missing data, with zero return codes indicating that the opera­
tion is complete.

82

CP/M System Calls

34 Write Random

Purpose

Writes a record using random (direct) access.

Parameters

Parameter Register Contents

Entry point C 22 H
Entry value DE FCB
Returned value Return code

Remarks

The Write Random system call is similar to the Read Random
system call, except that data is written to the specified file on
disk from the current DMA buffer.

If the addressed file’s extent has not yet been allocated, the al­
location is performed before the write operation continues. As
in the Read Random system call, the random record number is
not changed as a result of the write operation. The extent
number and current record fields of the addressed FCB are set
to correspond to the random record which is being written.

83

SoftCard II

After a random write operation has been performed, sequential
read or write operations can commence with the notation that
the currently addressed record is to be either read or written
again as the sequential operation begins. The random record
field can also be advanced by the programmer following each
write operation to achieve the effect of a sequential write oper­
ation.

Note
Reading or writing the last record of an extent in random
mode does not cause an automatic extent switch as it
does in sequential mode.

The error codes returned by a random write are identical to the
random read operation, with the addition of error code 05H,
which indicates that a new extent cannot be created due to
directory overflow.

84

CP/M System Calls

35 Compute File Size

Purpose

Determines the size of the file.

Parameters

Parameter Register Contents

Entry point C 23 H
Entry value DE FCB address
Returned value FCB Random record field set

Remarks

Compute File Size determines the size of the file specified in the
DE register pair. The FCB in register pair DE cannot contain
wild card characters and the rO—r2 field is used for random
access.

When the call is completed, the rO—r2 field of the FCB contains
the record address of the virtual file size. If the value r2 is 01H,
the file contains 65536 records, which is the maximum size of a
file. If r2 is OOH, rO and rl contain the file size, which is a
16-byte value with rO as the least significant byte.

85

SoftCard II

Compute File Size can be used to append data to the end of a
file by setting the random record position to the end of the file
and then performing a sequence of random write operations,
starting at the preset record address.

Note
If the file is written to by sequential write operations, the
virtual size of a file is the same as the physical size. If the
file was written to in random mode, “holes” exist in the
allocation map and the file may contain fewer records
than the size indicates. For example, if only the last record
of an eight-megabyte file is written in random mode (i.e.,
record number 65535), then the virtual size is 65536 rec­
ords, although only one block of data is actually allocated.

86

CP/M System Calls

36 Set Random Record

Purpose

Sets the random record position from a sequentially accessed
file to a specific value.

Parameters

Parameter Register Contents

Entry point C 24H
Entry value DE FCB address
Returned value None Random record field set

Remarks

Set Random Record sets the random record field of the speci­
fied file to a new value. This system call can be used in two
ways.

First, it can eliminate the task of searching a sequentially
accessed file to get the contents of various “key” fields. As each
field is encountered, Set Random Record is called to compute
the random record position for the data corresponding to this
key. If the size of the data block is 128 bytes, the record position
is placed into a table with the key for later retrieval.

87

SoftCard II

After searching the entire file and tabulating the key fields
and their record numbers, you can move instantly to a particu­
lar keyed record by performing a random read operation and
by using the corresponding random record number which was
saved earlier. This method can be used when variable record
lengths are involved, since the program need only store the
buffer-relative byte position along with the key field and record
number to find the exact starting position of the keyed data.

The second use of Set Random Record is for switching from
sequential access operations to random access operations. If a
file is sequentially accessed to a particular point in the file, Set
Random Record is called to set the record number. Subsequent
random read and write operations continue from the selected
point in the file.

88

CP/M System Calls

37 Reset Drive

Purpose

Resets specified disk drives to their initial values.

Parameters

Parameter Register Contents

Entry point C
Entry value DE
Returned value A

25H
Drive vector
OOH

Remarks

Reset Drive allows a calling program to reset a specified drive.
The drive vector parameter is a 16-bit vector of the drive to be
reset where the least significant bit represents drive A:.

89

SoftCard II

40 Write Random With Zero Fill

Purpose

Writes a zero record using random (direct) access.

Parameters

Parameter Register Contents

Entry point C 28H
Entry value DE FCB address
Returned value A Return code

Remarks

Write Random With Zero Fill is similar to system call 34, Write
Random, but writes zeros into a previously unallocated block
before data is written.

90

Chapter 4
6502 BIOS

Installing User-Written
Software in the 6502 BIOS 94

6502 BIOS Operation 94
Changing the 6502 BIOS 96
6502 Memory Map 97
Implementing Your Own Software 98

6502 BIOS Call Descriptions 99
0 CALLSUB 100
1 READMEM 101
2 WRITEMEM 102
3 READSEC 103
4 WRITESEC 104
5 READSLOT 105
6 WRITESLOT 106
7 STATSLOT 107
8 INITSLOT 108
9 WSTART 109

91

10 FORMAT 110
11 UPDATE 111
12 BEEP 112
13 CLEAR 113
14 INVERT 114
15 SETPT1 115
16 SETPT2 116

92

6502 BIOS

This chapter describes the 17 functions requests, the 6502 BIOS
calls, that access the 6502 microprocessor. A listing of the
system calls is provided in the following table.

6502 BIOS Calls
Table 4.1.

Call
Number Name

Call
Number Name

0 CALLSUB 9 WSTART
1 READMEM 10 FORMAT
2 WRITEMEM 11 UPDATE
3 READSEC 12 BEEP
4 WRITESEC 13 CLEAR
5 READSLOT 14 INVERT
6 WRITESLOT 15 SETPT1
7 STATSLOT 16 SETPT2
8 INITSLOT

The guidelines for using the 6502 BIOS calls are the same as
the guidelines for using CP/M system calls, except that param­
eters are transferred in and out of a seven-byte block of memory
(SoftCard addresses 0045H—004BH) instead of the CPU reg­
isters. See “6502 BIOS Calls” in Chapter 2 for details.

93

SoftCard II

Installing User-Written
Software in the 6502 BIOS

You can install your own device drivers or other user-written
software as part of the 6502 BIOS with the SoftCard II. This
section describes the facilities and programming conventions
you will need to perform this task. Strict adherence to the
programming conventions will ensure compatibility between
user-written programs in the 6502 BIOS.

Important
Before attempting to install software in the 6502 BIOS,
you should have experience in assembly language pro­
gramming and be familiar with both Z80 and 6502 in­
struction sets.

6502 BIOS Operation
When a SoftCard II is installed in the Apple II, H Plus or //e
computer and CP/M is loaded into memory, both the Z80 and
the 6502 microprocessors are run simultaneously. The Z80,
however, has executive control over the system. Because the
Z80 cannot address the 6502 RAM directly and the Apple uses
memory-mapped I/O, the Z80 must use the 6502 to perform all
I/O operations. The 6502 software that performs the I/O pro­
cessing is called the 6502 BIOS.

94

6502 BIOS

The SoftCard II BIOS consists of two parts: the Z80 or CP/M
BIOS, which interfaces to the CP/M operating system, and the
6502 BIOS which controls the I/O devices and implements the
print spooler.

Usually the 6502 BIOS, represented by Figure 4.1, is in a loop
waiting for a command from the Z80. When the 6502 receives a
command, it sends a command back to halt the Z80. The 6502
BIOS then performs a setup routine and jumps (CMD JMP) to
the main command handling routine (DOCMD). When the
main command handling routine is finished, it executes a clean­
up routine (CMDONE). The CMDONE cleanup routine passes
parameters to the Z80 memory and starts the Z80.

Figure 4.1. A Simplified Representation of 6502 BIOS

CMDLP: ;Main 6502 BIOS loop (waits
;for a command from the Z80).

CMDINI ;Get a command, perform setup
;processing.

CMDJMP: JMP DOCMD ;Jump to the main command
handling routine.

DOCMD: ;Execute the command.

CMDONE: . jPerform cleanup routine
;and turn on the Z80.

JMP CMDLP Jump to CMDLP and wait for
;the next Z80 command.

95

SoftCard II

Changing the 6502 BIOS
The 6502 destination address of CMD JMP and the beginning
address of CMDONE are stored in Z80 memory locations
CMDVEC and CMDEXT. This allows you to implement your
own software in the 6502 BIOS. If you replace the destination
address of CMDJMP with the 6502 address of your own pro­
gram or driver, control is passed to your program instead of the
main command routine when a 6502 BIOS call is made. At
this point, your program must decide whether to process the
call or to let the main 6502 command routine process the call.
Use the following code segment to define CMDEXT and
CMDVEC in Z80 memory:

CMDEXT: DW CMDONE ;CMDEXT is at 0F38EH
CMDVEC: DW CXMJMP+1 jCMDVEC is at 0F390H

If your program processes the call, the program should jump to
CMDONE when it is finished. If it lets the 6502 BIOS perform
its usual processing for this call, the program will then jump to
DOCMD.

96

6502 BIOS

6502 Memory Map
Two blocks in Figure 4.2 show the areas in the 6502 memory
that are reserved for user-written programs. The rest of the
6502 memory space is reserved for the 6502 BIOS, the print
spooler, text and graphics screens, and various other Apple
hardware interfaces.

0000H

FFFFH

Reserved for 6502 BIOS

FFFOH

User-written program area

HIADR

Reserved for 6502 BIOS

2000H

User-written program area

LOADR

6502 screen interface

Figure 4.2. 6502 BIOS Memory Map

The highest address available in the first user area is 1FFFH.
In the second user area, the highest address is FFFOH. The low
addresses for each area are dependent on which routines have
already been implemented in this area. Location LOMEM in
Z80 memory contains the lowest address currently available in
the first area (LOADR), while HIMEM contains the lowest
addresses available in the second area (HIADR). The Z80
addresses of both locations are listed in Table 4.2.

97

SoftCard II

Table 4.2.
6502 BIOS Vector Table

Name
Z80
Address Function

HIMEM F394H Contains the lowest address of the high
6502 free memory area.

LOMEM F392H Contains the beginning address of the low
6502 free memory area.

CMDVEC F390H Contains the destination address of the
JMP instruction to the main 6502 BIOS
call handling routine (CMDJMP).

CMDEXT F38EH Contains the destination address of the
JMP instruction to 6502 BIOS cleanup
subroutine (CMDONE).

Implementing Your Own Software
To install your own program or driver in 6502 memory, use
LOMEM or HIMEM to determine the amount of available
memory for your routine. Use 6502 BIOS call 1, READMEM,
to write your program into the designated 6502 user area,
starting at the location contained in either LOMEM or
HIMEM. The last step is to change the value of LOMEM or
HIMEM to point to the byte following the last byte of your
program or driver. If you don’t update LOMEM or HIMEM,
the next user routine or program that is installed could over­
write your program. Use the following code segments to define
CMDEXT and CMDVEC in Z80 memory:

LOMEM: DW LOADR ;LOMEM is at F392H
HIMEM: DWHIADR ;HIMEM is at F394H

98

6502 BIOS

6502 BIOS Call Descriptions

In each of the 6502 BIOS call descriptions, a table is provided
to show which parameters are needed for each call and the ad­
dresses they are stored in. Each system call includes a table of
parameters showing the initial values and the returned values
(if any). For example, in the following table:

Parameter Address Contents

Entry point 49H 1
Entry value 4AH

4BH
Low part of 6502 address
High part of 6502 address

Returned value 45H Data byte read from 6502 address

SoftCard memory address 49H contains the BIOS call number.
The entry value shows the type of information needed to make
the call and the memory locations that are relevant to the call.
(All 6 locations can be used for entry values if needed.) The
returned value parameter shows the SoftCard address and
data returned after each system call is made.

99

SoftCard II

0 CALLSUB

Purpose

Calls a 6502 subroutine.

Parameters

Parameter Address Contents

Entry point
Entry value

49H 0
45H 6502 register A
46H 6502 register X
47H 6502 register Y
4AH Low part of 6502 subroutine

address
4BH High part of 6502 subroutine

address
Returned value 45H 6502 register A

46H 6502 register X
47H 6502 register Y
48H 6502 status register

Remarks

A 6502 subroutine is executed with a 6502 JSR instruction.
Before the JSR instruction is executed, the 6502 registers are
loaded from the Z80 register pass area. At the same time, the
Apple monitor ROM is banked in. When the subroutine has
run, the contents of the 6502 registers are stored in the same
register pass area as before (addresses 45H—4BH) and control
is returned to the Z80.

100

6502 BIOS

1 READMEM

Purpose

Reads a byte from 6502 memory.

Parameters

Parameter Address Contents

Entry point 49H
Entry value 4AH

4BH
Returned value 45H

Low part of 6502 address
High part of 6502 address
Data byte read from 6502
address

Remarks

READMEM reads the contents of the 6502 address contained
in SoftCard memory locations 4AH and 4BH. The value is re­
turned in memory location 45H.

101

SoftCard II

2 WRITEMEM

Purpose

Writes a byte to a 6502 memory location.

Parameters

Parameter Address Contents

Entry point 49H 2
Entry value 45H Data byte to be written

4AH Low part of 6502 address
4BH High part of 6502 address

Returned value — None

Remarks

A byte stored at SoftCard address 45H is written to the indi­
cated 6502 address.

102

6502 BIOS

3 READSEC

Purpose

Reads from a disk sector.

Parameters

Parameter Address Contents

Entry point 49H 3H
Entry value 45H Track number (0—34)

46 H Disk drive number (1 or 2)
47H Slot number (4—6)
48H Sector number (0—15)
4AH Low part of 6502 disk sector

address
4BH High part of 6502 disk sector

address
Returned value 45H Error return code

0 = no error
16 = write-protect error
Other = 1/0 error

Remarks

READSEC performs a low-level disk sector read operation.
The address of the 256-byte sector is stored at SoftCard mem­
ory locations 4AH and 4BH.

103

SoftCard II

4 WRITESEC

Purpose

Writes to a disk sector.

Parameters

Parameter Address Contents

Entry point 49H
Entry value 45H

46H
47H
48H
4AH

4H
Track number (0—34)
Disk drive number (0—4)
Slot number (1—7)
Sector number (0—15)
Low part of 6502 disk sector
address

4BH High part of 6502 disk sector
address

Returned value 45H Error return code
0 = no error
16 = write-protect error
Other = 1/0 error

Remarks

A low-level sector write is performed. The 256-byte sector is
read from memory locations 4A and 4B.

104

6502 BIOS

5 READSLOT

Purpose

Reads a character from an accessory slot.

Parameters

Parameter Address Contents

Entry point 49H 5H
Entry value 47H Slot number (1—7)
Returned value 45H Character read

Remarks

A character is read from an accessory board installed in the
indicated Apple accessory slot. The board must be of type 3, 4,
or 6. See Table 6.6, “Accessory Slot Addresses and Assign­
ments,” in Chapter 6, for a description of accessory board
types.

105

SoftCard II

6 WRITESLOT

Purpose

Writes a character to an accessory slot.

Parameters

Parameter Address Contents

Entry point 49H
Entry value 45H

47H
Returned value —

6H
Character to be written
Slot number (1—7)
None

Remarks

A character is written to the accessory board in the indicated
slot. The board type must be 3, 4, 5, or 6. If the board type is
either 3, 5, or 6, and the slot number is 1, then the data is
buffered in the 32K-byte print buffer. See Table 6.6, “Acces­
sory Slot Addresses and Assignments,” in Chapter 6, for a
description of accessory board types.

106

6502 BIOS

7 STATSLOT

Purpose

Gets the input status of an accessory slot.

Parameters

Parameter Address Contents

Entry point 49H
Entry value 47H
Returned value 45H

7H
Slot number
Slot status
FFH = character ready
OOH = character not ready

Remarks

If a character is ready to be read from the specified accessory
slot, the value of memory location 45H will be FFH. If no char­
acter is ready, the value will be OOH.

107

SoftCard II

8 INITSLOT

Purpose

Initializes a slot.

Parameters

Parameter Address Contents

Entry point 49H
Entry value 47H
Returned value 45H

8H
Slot number
Slot status
FFH = character ready
OOH = character not ready

Remarks

Initializes the accessory board in the indicated slot if the board
is of type 3, 4, or 6. Other board types are unaffected. See Table
6.6, “Accessory Slot Addresses and Assignments,” in Chapter
6, for a description of accessory board types.

108

6502 BIOS

9 WSTART

Purpose

Performs a CP/M warm start.

Parameters

Parameter Address Contents

Entry point 49H
Entry value —
Returned value —

9H
None
None

Remarks

Performs a warm start by reloading the CCP module and first
256 bytes of the BDOS module into the appropriate addresses
of the SoftCard memory.

109

SoftCard II

10 FORMAT

Purpose

Formats a disk.

Parameters

Parameter Address Contents

Entry point 49H AH
Entry value 46H

47H
Drive number (1 or 2)
Slot number (5 or 6)

Returned value 45H Error return code
0 = no error
1—15 = I/O error
16 = write-protect error

Remarks

Formats the disk in the indicated drive for CP/M.

110

6502 BIOS

11 UPDATE

Purpose

Updates keyboard definition and screen function interface
tables.

Parameters

Parameter Address Contents

Entry point 49H
Entry value —
Returned value —

BH
None
None

Remarks

After changes are made to the Keyboard Definition Table, or
the screen function interface tables (Software Screen Function
Table or Hardware Screen Function Table) CP/M uses
UPDATE to make the new information active.

Ill

SoftCard II

12 BEEP

Purpose

Creates a tone of specified pitch and duration.

Parameters

Parameter Address Contents

Entry point 49H CH
Entry value 45H Tone duration

36 H Tone period
Returned value — None

Remarks

Performs the same function as the BEEP statement in GBASIC.
BEEP is intended for sound effect purposes.

112

6502 BIOS

13 CLEAR

Purpose

Clears the screen.

Parameters

Parameter Address Contents

Entry point 49H DH
Entry value 4AH Byte written to even screen

addresses
4BH Byte written to odd screen

addresses
Returned value — None

Remarks

Performs the same function as the GBASIC GR 1 command.
The byte at 4AH is written to all even locations on the high-
resolution graphics screen. The byte at 4BH is written to all
odd locations.

For more information on the GBASIC GR1 command, see the
Microsoft BASIC Interpreter Reference Manual.

113

SoftCard II

14 INVERT

Purpose

Inverts the screen in GBASIC high-resolution screen mode.

Parameters

Parameter Address Contents

Entry point 49H
Entry value —
Returned value —

EH
None
None

Remarks

All bytes on the high-resolution graphics screen are inverted.

114

6502 BIOS

15 SETPT1

Purpose

Sets High-Resolution Graphics Point 1.

Parameters

Parameter Address Contents

Entry point 49H FH
Entry value 46 H Exclusive OR mask

47H AND mask
4AH Low part of 6502 addresses
4BH High part of 6502 addresses

Returned value — None

Remarks

The indicated screen byte is first XORed with the data at 46,
the result is then ANDed with the data at 47, and finally this
result is XORed onto the screen.

115

SoftCard II

16 SETPT2

Purpose

Sets High-Resolution Graphics Point 2.

Parameters

Parameter Address Contents

Entry point 49H
Entry value 45H

10H
Byte to exclusive OR with screen
byte

4AH
4BH

Low part of 6502 addresses
High part of 6502 addresses

Returned value — None

Remarks

The data at 45 is XORed onto the screen at the 6502 memory
location stored at addresses 4A and 4B.

116

Chapter 5
Command Directory

Command and Utility Program Guidelines 119
APDOS 120
ASM 121
AUTORUN 123
BOOT 124
CAT 125
COPY 126
d: 129
DDT 130
DIR 134
DUMP 135
ED 136
ERA 140
LOAD 141
MFT 142

117

PATCH 143
PIP 145
REN 149
SAVE 150
STAT 151
SUBMIT 154
TYPE 156
USER 157
XSUB 158

118

Command Directory

This chapter is a directory for the CP/M commands and utility
programs contained in the SoftCard II system.

Command and Utility Program Guidelines

Commands and utility programs are listed in alphabetical or­
der. In each command and program description, the possible
command line formats are shown followed by an explanation
of the format. The syntax elements of the format are explained
in a “Remarks” section. Where applicable, the different com­
mands that can be used with the utility program are also
listed.

This chapter assumes that you know how to use the command
or program. If you are unsure of how to use a command or
program, see Chapter 6, “CP/M Commands and Utility Pro­
grams,” in the Microsoft SoftCard II Installation and Opera­
tion Manual.

119

SoftCard II

APDOS

APDOS [d:]cp/mfilename.ext=[s:]dosfilename

Purpose

Copies Apple text and data files from Apple DOS disks to
CP/M system disks.

Remarks

d: is the destination disk drive and s: is the source disk drive.
cp/mfilename.ext is the CP/M destination file and dosfilename
is the Apple DOS source file.

Different procedures are used for copying BASIC files and text
files. See “APDOS” in Chapter 6 of the Microsoft SoftCard II
Installation and Operation Manual for instructions and ex­
amples.

120

Command Directory

ASM

ASM filename[.shp]

Purpose

Converts a source program written in 8080A assembly lan­
guage into a HEX file.

Remarks

filename is the name of the source file with an extension of
.ASM. The filename extension should not be included in the
command line; ASM assumes the file will have an extension of
.ASM.

s specifies the disk drive (A: through D:) other than the active
drive that contains the source disk.

h specifies the drive that will receive the HEX file. If a HEX
file is not needed, Z is entered in place of the drive letter.

p specifies which drive should receive the PRN file. A PRN file
is the listing of the file with error messages. Enter Z to disable
the generation of the PRN file. Enter X to display the listing on
the screen.

If no parameters are specified, ASM assumes that the source
file is in the active drive and will create HEX and PRN files as
output.

ASM is invoked by typing the ASM command line at CP/M
command level. ASM can be stopped or aborted at any time by
typing CONTROL-C.

121

SoftCard II

ASM generates two types of error messages. Terminal errors
indicate what conditions prevented ASM from assembling the
program. Source program errors indicate errors in the source
program but don’t prevent ASM from assembling the program.
All error messages are listed in Appendix A, “CP/M Error
Messages.”

The following table lists the directives ASM recognizes in
addition to the 8080 instruction set.

ASM Assembler Directives
Table 5.1.

Directive Description

ORG Define starting address of the program or
data section.

END End program assembly.
EQU
SET

Define a numeric constant.
Set a numeric value.

IF Begin conditional assembly.
ENDIF End of conditional assembly.
DB Define data byte.
DW
DS

Define data word.
Define data storage area.

Examples

ASM FONT

Assembles the source file FONT.ASM from the active drive.
Both the HEX file (FONT.HEX) and the PRN file (FONT.PRN)
are saved on the same drive.

ASM MACRO.ABX

Assembles the source file MACRO.ASM from drive A:. ASM
saves the HEX file on drive B: and displays the listing at the
terminal.

122

Command Directory

AUTORUN

AUTORUN [command line]

Purpose

Permits you to create startup disks.

Remarks

command line is any executable CP/M program name or CP/M
built-in command.

A startup disk must be loaded in the active drive to be executed.
The active drive is usually A:. When you start the system, the
command line will be executed immediately after the CP/M
operating system modules are loaded into memory.

To change the command line on a disk, type AU TOR UN again
with a new command line. Typing AU TOR UN without a com­
mand line deletes the AUTORUN command line from the disk.

Example

AUTORUN CAT

Displays the directory on the default drive when the CP/M is
loaded into memory from a cold start.

123

SoftCard II

BOOT

BOOT [{number\M}]

Purpose

Reboots your Apple computer from any system disk at CP/M
command level.

Remarks

number is the slot number (4,5, or 6) of the disk controller board
connected to the disk from which you are loading. If you load
the operating system from drive A: or B:, the number can be
omitted. (The disk controller board for drives A: and B: is
installed in slot 6.)

M allows you to boot from the Apple Monitor in ROM. (The
Apple Monitor is the Applesoft™ or Integer BASIC Interpreter
in ROM.)

BOOT performs the same function as a CP/M cold start. It can
boot Apple DOS, Apple Pascal, Applesoft BASIC, Integer
BASIC, or any Apple He application software disk.

Make sure that the appropriate disk is in the drive from which
you are loading. To load CP/M, type BOOT and press the
RETURN key. To load any other operating system, type BOOT
followed by the appropriate argument, and press the RETURN
key.

124

Command Directory

CAT

CAT [filespec]

Purpose

Scans the directory of a disk to determine which files are on
that disk.

Remarks

filespec is name of the file or files CAT scans for. Wild card
characters (? or *) can be used in the filename and extension.
CAT (with no arguments) displays an alphabetical list of file­
names on a disk in the specified drive.

The list displayed by CAT is in alphabetical order and shows
the size of each file and the amount of remaining unused disk
space in kilobytes.

Examples

CAT

Scans the disk in the active drive and displays an alphabetical
list of files found.

CAT GBASIC.COM

Scans the disk in the active drive for the file GBASIC.COM. If
found, it displays the file, the size of the file in kilobytes, and
the amount of free storage space remaining on the disk.

125

GBASIC.COM
GBASIC.COM

SoftCard II

COPY

COPY c/:=s:[/l/]

Copies the contents of one disk onto another.

COPY d:/F

Formats a disk.

COPY c/:/D[/F][/V]

Creates a CP/M data disk.

COPY d:/S[/F][/V]

Creates a CP/M system disk.

Purpose

Copies and formats CP/M disks.

Remarks

The s: and d: arguments indicate the source drive and destina­
tion drive. Each of the different functions of COPY are per­
formed by including the software switch in the COPY com­
mand line. The software switches and their function are listed
in Table 5.2.

126

Command Directory

Table 5.2.
Software Switches

Switch Function

/D Instructs COPY to create a data disk.
/F Copies the format to disk.
/S Instructs COPY to only copy the CP/M operating

system onto the first three tracks of the disk.
/V Verifies the copy process.

COPY can be used from either CP/M command level or from
COPY program level. COPY is invoked by typing the appro­
priate command line format and pressing the RETURN key to
execute the command.

If you include the /S switch in the COPY command line, COPY
will format the disk if it hasn’t been formatted previously. If
the disk is already formatted, the files on the disk are not de­
leted. Use the /F switch to delete the previously formatted files.

If the /D switch is used and the disk is already a CP/M system
disk, the CP/M system is deleted and an additional 12K bytes
of disk space is made available for programs and data.

Important
Avoid using data disks in drive A: and in single-drive sys­
tems. The lack of an operating system on data disks
prevents CP/M from performing a warm start and recov­
ering from errors.

127

SoftCard II

Examples

COPY B:=A:/V

Copies the contents of the disk in drive A: onto the disk in drive
B: and verifies the copy process by comparing the data con­
tents of the two disks.

COPY A:=C:/V/F

Formats the disk in drive A: and then copies the contents of the
disk in drive C: onto the disk in drive A:.

COPY B:/F

Formats the disk in drive B:.

C:=A:

The COPY command line is executed from the program level; it
copies the contents of the disk in drive A: onto the disk in drive
C:.

B:/S

The COPY command line is executed from the program level; it
copies the operating system software from the disk in drive A:
onto the disk in drive B:.

128

Command Directory

d:

d\

Purpose

Changes the active drive in multiple-drive systems.

Remarks

d: is the disk drive identifier.

129

SoftCard II

DDT

DDT [filename.ext]

Purpose

Tests and debugs 8080A assembly language programs.

Remarks

filename.ext is the name of the source file to be examined or
modified. The source file must have an extension of .COM or
.HEX, or DDT will not recognize it. If you do not enter the file­
name with the DDT command, DDT is loaded into memory
and waits for further instructions.

DDT is the CP/M Dynamic Debugging Tool. It is used in con­
junction with the ASM assembler to test and debug assembly
programs. You can also use DDT for examining and modifying
your programs.

To invoke DDT, type the DDT command line and press RETURN.
If you include the filename in the command line, DDT will
display the DDT version number, the next available memory
location (denoted by NEXT), the program counter setting (de­
noted by PC), and the DDT program prompt (-). If you enter
DDT without the filename, only the version number and the
prompt appear.

When the DDT program prompt appears, you can use any of
the DDT commands listed in Table 5.3.

130

Command Directory

Table 5.3.
DDT Commands

Command Purpose

Annnn Enters assembly language statements starting
at address nnnn.

D Displays the contents of the next 192 bytes of
memory.

Dssss,ffff Displays memory contents starting at address
ssss to address ffff.

Fssss,ffff,cc Fills memory with constant cc from address
ssss to address ffff.

G Begins execution at the address contained in the
program counter.

Gssss
Gssss,bbbb

Begins execution at address ssss.
Sets a breakpoint at address bbbb\ begins
execution at address ssss.

G,bbbb Sets a breakpoint at address bbbb\ begins
execution at the address contained in the pro­
gram counter.

G,bbbb,cccc Sets breakpoints at addresses bbbb and cccc;
begins execution at the address contained in the
program counter.

If He name, ext Sets up the default File Control Block using the
name filename.ext.

L Lists the next eleven lines of the assembly lan­
guage program.

Lssss Lists eleven lines of the assembly language pro­
gram starting at address ssss.

Lssss, ffff Lists the assembly language program which
starts at address ssss and finishes at address
ffff-

131

SoftCard II

Table 5.3. (continued)

Command Purpose

Mss s dddd Moves the memory block (address ssss to ffff)
to address dddd.

R Reads a file from disk.
Rnnnn Reads a file from disk, beginning at address

nnnn.
Sssss Displays memory contents at address ssss and

optionally changes the contents.
Tnnnn Traces the execution of nnnn program instruc­

tions.
\Jnnnn Executes nnnn program instructions, then stops

and displays the contents of the CPU
registers.

X Displays the contents of the CPU registers.
Xr Displays contents of CPU registers or flag r and

optionally changes it.

DDT can be aborted at any time by typing CONTROL-C.

Examples

The following example shows how DDT would be invoked and
the results of using some of the DDT commands.

DDT DUMP.COM

Loads DDT and the file DUMP.COM into memory.

132

DUMP.COM
DUMP.COM

Command Directory

DDT VERS 2.2
NEXT PC
1E00 0100

Displays the DDT version number. NEXT identifies the next
free memory location (1E00). PC identifies the program coun­
ter setting (0100). is the DDT prompt.

L

When RETURN is pressed, DDT displays the next 11 lines of
assembly language disassembled from memory.

0100 LXI H.0000

0104 SHLD 0215
0107 LXI SP.0257
010A CALL 01C1

0103 DAD SP

010D CPI FF
010F JNZ 011B
0112 LXI D.01F3
0115 CALL 019C
0118 JMP 0151
011B MVI A,80

133

SoftCard II

DIR

DIR [d:][filename.ext]

Purpose

Scans a specified disk to determine what files are on that disk.

Remarks

d: is the specified drive and filename.ext is name of the file or
files DIR scans for. Wild card characters (? or *) can be used in
the filename and extension. Entering DIR without any argu­
ments displays only the sequential list of filenames on a disk in
the specified drive.

Examples

DIR

Displays all files on the disk in the active drive.

DIR GBASIC.COM

Displays GBASIC.COM on the disk in the active disk.

DIR A:*.COM

Displays all the files with an extension of .COM on disk in
drive A:.

DIR B:

Displays all files on the disk in drive B:.

134

GBASIC.COM
GBASIC.COM

Command Directory

DUMP

DUMP filespec

Purpose

Displays the contents of a disk file in hexadecimal form.

Remarks

filespec is the location and name of the file.

To invoke DUMP, type DUMP in the command line format at
CP/M command level and press RETURN. The hexadecimal
contents of the file will be displayed on the terminal’s screen.
DUMP lists 16 bytes at a time with each line’s absolute address
on the left.

Example

DUMP B:CAT.COM

This command line will display the contents of the CAT.COM
file in the following format:

0000 ED 73 DD03 31 05 04 CD45 01 CD4C 02 0E 11 11
0010 5C 00 CD05 00 3C 28 16 CDDF 01 CD80 01 0E 12

135

B:CAT.COM
CAT.COM

SoftCard II

ED filespec

Purpose

Creates and edits CP/M ASCII text files.

Remarks

filespec is the location and name of the file to be edited. You
must include the extension with the filename. Enter the drive
letter (d:) if the file is on a drive other than the active drive.

ED is the CP/M editor. It is used to create and edit CP/M
ASCII text files. ED provides the basic requirements for insert­
ing and deleting text, moving from line to line, and searching
for text.

At CP/M command level, type ED and the filename. Press
RETURN to load ED into memory. ED then creates a temporary
file (the name of the file with an extension of .$$$) for editing.

When you see the asterisk prompt on the screen, the file is
ready to edit. The commands available for editing are listed in
Table 5.4.

136

Command Directory

Table 5.4.
Commands for Editing

mJ fs tring COmROL-Tdstringl [,istring2,
/strmg3,...]CONTROL-Zes^rmgCONTROL-Z

Command Action

mA Moves the number of lines specified by n from the
temporary file to the edit buffer.

B Moves the character pointer (CP) to the beginning
of edit buffer. The CP takes the place of the cursor.

-B
mC

-mC

mD

-mD

E

Moves the CP to end of edit buffer.
Moves the CP n characters forward.
Moves the CP n characters backward.
Deletes n characters after the CP.
Deletes n characters before the CP.
Ends edit session, closes files, and returns to
CP/M.

MFstriMg
CONTROL-Z

I
I string
CONTROL-Z

Finds the Mth occurrence of string.
Ends edit session, closes and reopens files.
Enters insert mode.

Inserts string into the edit buffer.
Is tring Insert a line of text specified by string.

The m argument specifies how many times the fol­
lowing operation is repeated. Beginning after the
CP, ED searches for fstring. If found, it inserts
istringn after it. Then, ED deletes all characters
following up to, but not including, estring.

mK

-mK

mL

-mL

Deletes n lines after the CP.
Deletes n lines before the CP.
Moves the CP forward n lines.
Moves the CP backward -n lines.

riNYcmdstring
CONTROL-Z Repeats execution of the ED commands specified

by the command string cmdstring n times.

137

SoftCard II

Table 5.4. (continued)

Command Action

nN string
CONTROL-Z Searches for the nth occurrence of string through­

out the file.
0
nP
-nP

Returns to original file.
Moves the CP forward and prints n pages.
Moves the CP backward n pages and displays the
page following the CP.

Q
R

Quits edit session with no changes saved.
Reads temporary file, into the edit
buffer.

Pfilename Reads library file filename.TAP into the edit
buffer.

nS fstring CONTROL-ZrstringCONTROL-Z
Searches for fstring and replaces with rstring.
Repeats the operation n times.

nT
-nT
OT

Displays n lines preceding the CP.
Displays n lines following the CP.
Displays all text from the beginning of the line to
the CP.

T
OTT
U
ov

Displays all text from the CP to the end of the line.
Displays the entire line without moving the CP.
Converts text to uppercase.
Displays edit buffer free space in bytes.
Verifies line numbers.

nW
nX

Writes n lines to disk.
Copies n lines (starting at the CP) to temporary
library file X$$$$$$$.LIB.

nZ Delays execution of the command which follows by
n seconds.

n: Moves the CP to line number n.
[-]n Moves the CP forward or backward and displays

one line.

138

Command Directory

Examples

ED DEMO.BAS

Loads ED into memory and creates the temporary file
DEMO.???. The temporary file is then loaded into the edit
buffer.

ED command prompt; ED is ready for your command.

139

SoftCard II

ERA

ERA filespec

Purpose

Erases specified files from a disk.

Remarks

filespec is the location and the name of the file or files to be
erased. Wild card characters (? or *) can be used in the filename
or extension.

Examples

ERA B:TEMP.OLD

Erases the file TEMP.OLD on the disk in drive B:.

ERA CABAS

Erases all files with the extension .BAS on the disk in drive C:.

ERA * *

Erases all files on the disk in the active drive.

140

Command Directory

LOAD

LOAD filespec

Purpose

Performs the final step in preparing an assembly language
program for execution by converting a disk file with the exten­
sion .HEX into a machine-executable command file (with an
extension of .COM).

Remarks

filespec is the location and the name of the file with a .HEX
extension. The extension need not be included with the file­
name. LOAD assumes it is a HEX file. Enter the drive letter if
the file is on a drive other than the active drive.

At CP/M command level, type LOAD in the specified format
and press RETURN. LOAD creates a COM file in memory
which begins with address 0100H. To save the COM file, use
the SAVE command.

Example

LOAD B:TIME

Loads the TIME.HEX file from drive B:.

FIRST ADDRESS 0100
LAST ADDRESS 0222
BYTES- READ 0130
RECORDS WRITTEN 02

When the file is loaded, the screen displays the starting address
(0100), the last address (0222), the number of bytes (130), and
the number of records (2) written by LOAD into the file
TIME.COM.

141

TIME.COM

SoftCard II

MET

MFT filespecl\,filespec2...]

Purpose

Copies files from one disk to another on single-drive systems.

Remarks

filespec is the specification of the files to be copied. Wild card
characters (? and *) can be used in the file specifications.

MFT is invoked by typing MFT at CP/M command level. The
copy process is started when you press the RETURN key.

Important
You must have a CP/M system disk in disk drive A: before
typing CONTROL-C.

Examples

MFT *.COM

Copies all COM files on the source disk to the destination disk
at CP/M command level.

MFT MBASIC.COM.CONFIGIO.BAS

Copies the GBASIC.COM and CONFIGIO.BAS files from the
source disk to the destination disk at CP/M command level.

142

GBASIC.COM

Command Directory

PATCH

PATCH {filespec\offset}=[p1 p2 p3...][(v1 v2 i/3)]

Purpose

Installs program updates and modifications to the CP/M sys­
tem modules.

Important
The only time you should have to use PATCH is when you
receive explicit instructions from Microsoft Corporation.
If you wish to install your own modifications or updates
without instructions from Microsoft, do so at your own
risk.

Remarks

filespec is the name of the COM file to be modified.

offset is a one through six digit hexadecimal byte offset. The
offset is from the beginning of the disk if the CP/M system
tracks are to be modified.

pl, p2, p3 are two-digit hexadecimal byte “patches.”

vl,v2,v3 are optional two-digit hexadecimal verification bytes.

Spaces are required between all byte arguments.

143

SoftCard II

If modifications are made to a COM file, specify the disk and
the file by typing the filespec argument. If modifications are
made to the CP/M system tracks, use the offset argument. If
the filespec is included, the offset is from the beginning of the
file starting at byte 0.

The bytes following the equals operator (=) are written to the
specified file. If there is no file specified, the bytes are written
to the location specified by the offset argument.

Once the patch is made, the asterisk prompt reappears. Repeat
the procedure to install another patch, or type CONTROL-C to
return to CP/M command level.

144

Command Directory

PIP

PIP d:[filespec] = [s:]filespec[p]

Copies a file to another disk.

PIP [d:]newfilespec=[s:]oldfilespec[p]

Renames the destination file during the copy process.

PIP d:[filespec] = [s:]filespec[gn]

Copies files from different user areas to the active user area.

PIP [d:]dest-[d‘.]source1,source 2...

Appends disk files (concatenation).

PIP LST'=filespec[p]

Sends data to an output device, such as a printer or terminal.

PIP ddest:=sdest:[p]

Copies data between I/O devices.

Purpose

Copies data between files or devices.

145

SoftCard II

Remarks

d: is the destination drive and s: is the source drive.

filespec is the file specification of the file or files from which
you are copying. If you are changing the name of the copied file,
newfilespec is the new filename and oldfilespec is the old
filename.

[p] is the parameter argument. The parameters that can be
used with PIP are listed in Table 5.5, “PIP Parameter Sum­
mary.”

If you are copying files, de st is the destination file of the copy
operation and source is the source file. Commas must separate
the source file arguments.

If you are copying data between devices, ddest\ is the destina­
tion device and sdest: is the source device of the copy process.

PIP can be used by typing the appropriate command line for­
mat. Press RETURN to execute the command. PIP can be aborted
at any time by pressing the space bar or any other key during
the copying process. PIP confirms that the process has been
aborted by displaying the message “ABORTED.”

146

Command Directory

PIP Parameter Summary
Table 5.5.

Parameter Action

B Specifies block mode transfer.
Dn Deletes all characters after the nth column.
E Echoes the data being copied to the screen

during the copy process.
F Removes formfeed characters from data

during the copy process.
Gn Copies a file from user area n to the active user

area.
kJ Checks for proper Intel® HEX file format.
I Ignores any null records in Intel HEX file

copy operations.
L Translates uppercase letters to lowercase.
N Adds a line number to each line copied.
0 Object file copy operation (ignores end-of-

file markers).
Pn Inserts page ejects after every nth line; the

default value is 60 lines.
Qs£h®?CONTROL-Z Copies only a portion of the file up to string.
R Directs PIP to copy from a system file.
Ss£migCONTROL-Z Copies only the portion of the file from

string to the end of the file.
Tn Sets tab stops to every nth column.
U Translates lowercase letters to uppercase.
V Verifies copy by comparison after the copy

process has been finished.
w Directs PIP to copy onto an R/O file.
z Zeros the parity bit on input for each

ASCH character.

147

SoftCard II

Examples

PIP B:=*.BAS

Copies all files with the extension of .BAS on the active drive to
drive B:.

PIP DOG.COM = CAT.COM

Copies the file CAT.COM into a new file called DOG.COM on
the active drive.

B:ED.COM=A:

Copies the file ED.COM from drive A: to drive B: under the
same name.

B:=S*.COM

Copies all the files on the active drive that start with the letter
“S,” and have an extension of .COM to drive B:.

148

DOG.COM
CAT.COM
CAT.COM
DOG.COM
ED.COM

Command Directory

REN

REN [d:]new filename.ext=old filename.ext

Purpose

Renames files while leaving the file text intact.

Remarks

new filename, ext is the new name of the file and old filename, ext
is the original name of the file. Wild card characters cannot be
used in either the old filename or the new filename.

Examples

REN TEMP.NEW-TEMP.OLD

Renames TEMP.OLD as TEMP.NEW.

REN B:PEAR.COM-APPLE.COM

Renames APPLE.COM on drive B: as PEAR.COM.

149

APPLE.COM
APPLE.COM
PEAR.COM

SoftCard II

SAVE

SAVE nnnfilespec

Purpose

Saves the contents of memory in a specified disk file.

Remarks

nnn is the number of memory pages to be saved.

filespec is the drive and the name of the file in which to save the
memory contents.

Example

SAVE 26 C:MYPROG.COM

Saves 26 pages of memory in a file called MYPROG.COM on
disk drive C:.

150

C:MYPROG.COM
MYPROG.COM

Command Directory

STAT

STAT [d:]

Displays disk drive status.

STATd:{DSK:|USR:}

Displays active disk and user area status.

STAT files pec

Displays file status.

STAT {d:\filename.ext}$attribute

Assigns attributes to files and disks.

STAT log:=phy:

Makes device assignments.

STAT VAL:

Displays possible STAT commands.

STAT DEV:

Displays the current device assignments.

Purpose

Displays status information and changes device assignments.

151

SoftCard II

Remarks

d: is the disk drive identifier.

filespec is the name of the file or files from which you want to
obtain status information. Wild card characters can be used to
obtain status information on more than one file at a time.

attribute is one of the attributes from Table 5.6, “File and Disk
Attributes,” that can be assigned to the file or disk.

log\ and phy\ are the logical and physical I/O devices.

STAT is executed by typing the appropriate command and
pressing the RETURN key. STAT is executed from CP/M com­
mand level only.

Table 5.6.
File and Disk Attributes

Attribute Action

$R/O
$R/W

Prevents writing to or deleting the file.
Allows writing to and deleting the file. This
attribute cancels $R/O.

$SYS Prevents the display of the file when the DIR
built-in command is invoked.

$DIR Cancels the $SYS attribute.

152

Command Directory

Examples

STAT

Displays file attributes and amount of free space (in kilobytes)
for all disk drives since the last warm or cold start.

STAT B:

Displays amount of disk free space in drive B:.

STAT DEMO.BAS

Displays size and attributes of DEMO.BAS file on the active
drive.

STAT B:DOG.COM $R/O

Assigns the $R/O attribute to DOG.COM on drive B:.

STAT CON-TTY:

Assigns the physical device TTY: to the logical device CON:.

STAT C:$R/O

Assigns a temporary write-protect status to drive C:.

153

B:DOG.COM
DOG.COM

SoftCard II

SUBMIT

SUBMIT filespec abc

Purpose

Creates a file which contains commands to be executed from a
disk file rather than from the keyboard.

Remarks

filespec is the location and filename of a text file to be submit­
ted. The filename must have a .SUB extension. The extension
need not be included with the filename; SUBMIT assumes it is
a SUB file. Enter the drive letter if the file is on a drive other
than the active drive.

a, b, and c are arguments for optional variables in the SUBMIT
file. The variables can be filenames or other information needed
by the commands in the SUBMIT file. The symbols $1,$2, and
$3 are substituted for missing parameters in format 2.

154

Command Directory

Examples

File: TEST.SUB

The name of the SUBMIT file.

CAT $1.BAS

The contents of the SUBMIT file.

PIP $2:=$1.BAS
GBASIC $1
SYSTEM
ERA $1.BAS

This program looks for a GBASIC file named by variable $1.
PIP copies the file to the drive named by variable $2. GBASIC
then executes the file. The file is erased after execution.

SUBMIT TEST DEMO B

Loads SUBMIT into memory and creates the SUBMIT file,
$$$.SUB, from the file, TEST.SUB. $$$.SUB executes the
commands from TEST.SUB: and searches for DEMO.BAS.
The SUBMIT command then copies it to drive B:, runs GBASIC
and DEMO.BAS, and erases DEMO.BAS after execution.

155

SoftCard II

TYPE

TYPE files pec

Purpose

Displays the contents of a specified text file on the screen.

Remarks

filespec is the location and the name of the file. No wild card
characters are allowed in the filespec.

Example

TYPE DUMP.ASM

Displays the contents of the file DUMP. ASM on the screen.

156

Command Directory

USER

USER n

Purpose

Separates disk memory into user areas.

Remarks

The user areas are designated by numbers, n is the number of
the user area.

157

SoftCard II

XSUB

XSUB

Purpose

XSUB is a variation of SUBMIT, which allows constant char­
acter input from a disk file during program execution.

Remarks

Introduce XSUB as the first line of a SUBMIT file (filename.
SUB). Run the SUBMIT file as instructed by the command
prompts. When CP/M processes the SUBMIT file, it relocates
the XSUB program directly below the CCP in memory in order
to process the command lines of the SUBMIT file. The XSUB
program remains active until all the commands in the SUB­
MIT file have been executed or until a cold start has been
performed.

158

Chapter 6
I/O Configuration

CONFIGIO 161
Running the CONFIGIO Program 162
CONFIGIO Menu Selections 163

Screen Function Interface 164
Screen Function Tables 165
Configuring the
Screen Function Interface 167

Keyboard Character Definition 178
Keyboard Character Definition Table 178
Redefining Keyboard
Characters With CONFIGIO 179
Notes on Keyboard
Character Definition 182

Adding Nonstandard
I/O Devices and User Software 182

User Patch Areas 184
I/O Vector Table 184
Adding I/O Software
to the User Patch Areas 186

I/O Device Protocols
for Assembly Language Programs 192

Slots Type Table 193

159

I/O Configuration

The SoftCard version of CP/M can be modified for use with
different I/O devices and software. This chapter describes the
following areas of CP/M that can be modified:

The screen function interface

The Keyboard Character Definition Table

Patch areas for I/O software

All three areas can be changed or examined with the
CONFIGIO utility program.

CONFIGIO

CONFIGIO is a utility program that changes designated areas
of the BIOS. CONFIGIO consists of a series of menus that
allow you to perform the following functions:

Examine and modify the screen function interface for use
with an external terminal

Redefine keyboard characters

Load user I/O driver software into designated user patch
areas

Save changes made with CONFIGIO on a system disk

161

SoftCard II

Running the CONFIGIO Program
The CONFIGIO program is on the SoftCard II Master
disk. To run it, insert a CP/M system disk that contains
CONFIGIO.BAS and GBASIC.COM into drive A:. Load
CP/M with a cold start. When you see the CP/M command
level prompt A>, type

GBASIC CONFIGIO

and press the RETURN key.

When CONFIGIO has been loaded into memory, the screen
displays a menu, as shown below. Each selection allows you to
perform the task named. To select a task, press the number key
corresponding to the task you wish to perform.

+ + CONFIGIO SELECTION MENU + +

1. Configure Screen Function Interface

2. Redefine Keyboard Characters

3. Load User I/O Driver Software

4. Read/Write Changes Made

Q. Quit Program

Select -

162

GBASIC.COM

I/O Configuration

CONFIGIO Menu Selections
1. Configure Screen Function Interface

This selection allows you to specify the control sequences
required for an external terminal or application program
to execute specific screen functions. Instructions for con­
figuring the screen function interface for an external ter­
minal are provided in the “Configuring the Screen Func­
tion Interface” section of this chapter.

2. Redefine Keyboard Characters

This selection allows you to redefine the ASCII value
assigned to any particular key on the keyboard, such as a
seldom-used control character. Instructions for redefining
keyboard characters are given in the “Redefining Key­
board Characters With CONFIGIO” section of this chap­
ter.

3. Load User I/O Driver Software

This option allows you to load the necessary I/O driver
software into the patch areas for use with nonstandard
Apple I/O devices or I/O software. If you are adding an
I/O device that requires special I/O software, the tech­
nical manual for that device should give explicit instruc­
tions on how to load the I/O software into memory. If it
does not, contact the manufacturer of the I/O device.

If you are planning to add your own I/O software to the
patch areas, read “Adding Nonstandard I/O Devices and
User Software” in this chapter.

163

SoftCard II

4. Read/Write Changes Made

This option allows you to save the changes made with
CONFIGIO menu selections 1 through 3. Instructions for
using menu selection 4 are listed with instructions on
using the other menu selections in this chapter.

Q. Quit Program

Pressing Q exits the CONFIGIO program and returns to
the CP/M operating system.

Screen Function Interface

The screen function interface controls how characters are dis­
played on the Apple screen or on the screen of an external ter­
minal. Screen functions (also called screen attributes) are spe­
cial control sequences that govern the display characteristics
of the screen monitor or terminal. Some application programs
are written for more than one computer and must be modified
to display characters on the screen correctly.

Most popular terminals, including the standard Apple screen
monitor, support special screen functions such as direct cursor
addressing, screen clear, and highlighted text. Many CP/M
application programs, such as word processing packages and
business software, use these functions as part of the applica­
tion display. The character sequences, however, often differ
from terminal to terminal.

The screen function interface is configured for the standard
Apple screen monitor. The Soroc IQ™ 120/IQ 140, Hazeltine™
1500/1510, and Datamedia terminals can be used as external
terminals without any modifications to the screen function
interface. If you use an external terminal that is not compatible
with your application software, special assembly language
subroutines must be written to resolve the differences.

164

I/O Configuration

Screen Function Tables
The screen function interface solves the compatibility problem
by translating the functions (as they are received from the user
software) into the corresponding functions expected by the
screen display’s circuits. This is carried out by two translation
tables: the Software Screen Function Table and the Hard­
ware Screen Function Table.

The Software Screen Function Table recognizes an incoming
screen function sequence and translates it into the correspond­
ing sequence found in the Hardware Screen Function Table.
This sequence is then sent to the terminal device.

Screen Functions Supported

The screen function interface recognizes and translates the
following screen functions:

Clear Screen

Clears the entire screen, fills the screen with spaces, and
places the cursor in the home position.

Clear to End-of-Page .

Clears all information from the cursor (including the cur­
sor position) to the end of the page.

Clear to End-of-Line

Clears all information from the cursor (including the cur­
sor position) to the end of the line.

Set Normal (lowlight) Text Mode

Sets the normal video display mode; characters are dis­
played as white characters on a black background.

165

SoftCard II

Set Inverse (highlight) Text Mode

Sets the inverse video display mode; characters are dis­
played as black characters on a white background.

Home Cursor

Moves the cursor to the first character position on the
first line.

Address Cursor

Sets the cursor address for a specified printer offset.

Move Cursor Up

Moves the cursor up one line. If the cursor reaches the top
line of the screen, it remains there and no scrolling occurs.

Move Cursor Forward

Moves the cursor one cursor position to the right, but does
not destroy the character in that position. If the cursor is
at the right end of the line, it will remain there.

In addition, there are two other screen functions which are
used on all terminals: backspace and linefeed. The backspace
character (ASCII 8) function moves the cursor backwards,
and the linefeed character (ASCII 10) function moves the cur­
sor down one line.

The control sequences for screen functions are a single control
character or an ASCII character preceded by a single lead-in
character. Control sequences consisting of three or more char­
acters are not supported.

166

I/O Configuration

Configuring the Screen Function Interface
Load and run the CONFIGIO program as instructed in the
“CONFIGIO” section at the beginning of this chapter.

3 ______________________
Note

Before configuring the screen function interface for an
external terminal, ensure that there is no accessory board
installed in slot 3. If there is, turn the power off, remove
the board, and use the standard Apple video screen moni­
tor (see Figure 2.2 in Chapter 2 of the Microsoft SoftCard
IIInstallation and Operation Manual). Once the configu­
ration process is complete, you can reinstall the board and
use its screen monitor as before.

When the CONFIGIO selection menu appears (see page 162),
press the 1 key. CONFIGIO will display the Hardware and
Software Screen Function Tables as shown below:

+ SCREEN FUNCTION INTERFACE MENU +

FUNCTION SOFTWARE HARDWARE

Clear Screen
Clr To EOS
Clr To EOL
Lo-lite Text
Hi-lite Text
Home Cursor
Address Cursor
XY Coord Offst
XY Xmit Order
Cursor Up
Cursor Forward

ESC *
ESC Y
ESC T
ESC)
ESC (

FF
VT
GS
SO
SI
EM
RS
32
XY
US
FS

RS
ESC =

32
YX
VT
FF

A
2.
3.
4.
Q

SOROC IQ 120 IQ 140
HAZELTINE 1500/1510
DATAMEDIA
Other
Quit

Select

167

SoftCard II

The previous menu shows the default values of the Hardware
and Software Screen Function Tables. Items in the Software
column are the default control sequences of the Software Screen
Function Table. Items in the Hardware column are the ASCH
codes needed by the terminal hardware to perform the stated
screen function. A NUL (ASCH 00) entry in either table indi­
cates that the function is not available.

Three of the numbered entries in the lower section of the screen
are for terminals for which CONFIGIO has data. To configure
the screen function interface for any of the terminals listed,
type the menu number corresponding to the terminal. For ter­
minals not listed, or for application programs requiring modi­
fications to the screen function interface, press the 4 key. To
return to the main CONFIGIO menu, press the Q key.

For application programs requiring changes to the screen func­
tion interface, the Software Screen Function Table is modified.
External terminals will usually require modifications to the
Hardware Screen Function Table.

The Software Screen Function Table must match sequences
sent by the application program to perform screen functions.
The Hardware Screen Function Table must have non-zero
entries in all of the nine functions. We recommend setting up
the Software Screen Function Table to emulate a Soroc IQ
120/IQ 140 terminal. This is a common configuration that is
supported by most CP/M software.

Configuring for an External Terminal

For Soroc IQ 120 or IQ 140 terminals, no changes are needed
for either screen function table. However, when you first turn
on Soroc terminals, text is shown in the “highlight” mode.
CP/M will reset the screen to display in a normal “lowlight”
mode whenever a cold start is performed.

For Hazeltine 1500/1510 terminals, use the Hardware Screen
Function Table only. (CP/M translates the Hazeltine cursor­
addressing function with no XY coordinate offset.) We do not
recommend using the Hazeltine screen function sequences in
the software table. It is best to set up the hardware table for the
Hazeltine, and the software table for another common termi­
nal, such as the Soroc IQ 120/IQ 140.

168

I/O Configuration

For Datamedia terminals, set up the Hardware Screen Func­
tion Table only. (Datamedia terminal control sequences are
not usually supported by CP/M software.) Set the hardware
table for use with a 24x80 video board, and the software table
for another common terminal type, such as the Soroc IQ 120/
IQ 140.

Note
Highlight text and lowlight text screen functions (GB ASIC
commands INVERSE and NORMAL) are not supported
by Datamedia terminals. Thus, the table entries speci­
fied for these functions are set to an arbitrary value to
ensure that these two entries will have non-zero values.

To configure the screen interface for a terminal not listed in the
menu, press the 4 key when the Screen Function Interface
menu appears. CONFIGIO will load and display the list of
configurable screen functions shown in the following figure.

+ + SCREEN FUNCTION DEFINITION + +

1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -

10 -
Q -

Lead-in Character
Clear Screen
Clr To EOS
Clr To EOL
Lo-Lite Text
Hi-Lite Text
Home Cursor
Address Cursor
Cursor Up
Cursor Forward
Quit

Select -

169

SoftCard II

You can now change any of the values in the Terminal Screen
Function Definition Table.

Note
The appropriate screen function command characters for
your terminal are described in the technical manual for
that terminal. To find out which codes are transmitted by
a particular program (for example, a word-processing pro­
gram), consult the manual for that program.

Select a number (1 through 10) to define the character sequen­
ces for any of the functions listed in Table 6.1.

170

I/O Configuration

Table 6.1.
Screen Function Descriptions

Number Title Description

1 Lead-in
character

Defines the lead-in character: the
character (usually an escape
sequence) that precedes the screen
function command character. A
particular screen function may or
may not require a lead-in
character.

2 Clear screen Clears the screen and places the
cursor at the top left corner of the
screen.

3 Clear to EOS Clears the screen from the cursor
to the end of the screen.

4 Clear to EOL Clears the screen from the cursor
to the end of the line.

5 Lowlight
text

Sets the normal video mode for
displaying text.

6 Highlight
text

Sets inverse or double intensity
video mode, depending on which
mode your terminal supports.

7 Home cursor Puts the cursor at the top left
corner of the screen, but does not
clear the screen.

8 Address
cursor

Tells the terminal to go to a cursor
address defined by the next two
characters entered.

XY
coordinate
offset

Defined as part of selection 8. The
XY coordinate offset is the num­
ber that is added to the X and Y
coordinates when they are sent to
the terminal (usually 32).

XY
transmit
order

Also defined as part of selection 8.
Establishes the order in which
coordinates are transmitted. Must
be either XY or YX (usually YX).

9 Cursor up Moves the cursor up one line on
the screen.

10 Cursor
forward

Move the cursor forward on a line
without deleting the character
under the cursor.

171

SoftCard II

To assign an escape sequence to any of these functions, type
the corresponding number and press the RETURN key.

For example, press the 1 key if you wish to specify a screen
function lead-in character. The program will display:

LEAD-IN CHAR:

Enter the lead-in character required. Characters can be typed
in any one of the following formats:

aaa where aaa is a 2- or 3-character ASCII
name.

c where c is any keyboard character.

CONTROL-c where c is any character.

LC-c LC- indicates that the following character
is lowercase. Type this in place of a low­
ercase character if your keyboard has no
lowercase characters.

&H hh hh is the ASCII hexadecimal code (pre­
ceded by &H). Use this format if the char­
acter cannot be typed. (See “ASCII Char­
acter Codes,” Appendix H, in the Micro­
soft BASIC Interpreter Reference Man­
ual.}

After you have entered the lead-in character, the program will
ask:

SOFTWARE OR HARDWARE (S/H)?

If the lead-in character is to be used in the Software Screen
Function Table, press the S key. If the lead-in character is to be
used in the Hardware Table, press the H key.

172

I/O Configuration

To define any of the other screen functions, press the number
for that function. The program will prompt you for the com­
mand character for that particular function.

The program then returns to the Screen Function Definition
menu and waits for you to select another number or Q. You can
make as many changes to the tables as you wish in this way.

The process for the address cursor function differs somewhat.
If you press 8, address cursor, the process is the same as with
the other selections, until you see the prompt:

REQUIRE LEAD-IN (Y/N)?

After you answer this prompt by pressing Y or N, the computer
displays:

XY COORD OFFST :

Type a numeral for the number of spaces that are to be added to
the X and Y coordinates before they are transmitted. Finally,
the program asks:

XY XMIT ORDER :

If the X and Y coordinates are transmitted in the order Y then
X, enter YX. If the coordinates have been transmitted X then Y,
enter XY.

The program then asks

SOFTWARE OR HARDWARE (S/H)?

and then continues in the same manner as with the other
functions.

173

SoftCard II

Configuring for Application Programs

Use the same procedure as that used for external terminals.
Most application programs will give explicit instructions on
how to configure the screen function interface. If a program
requires changes to the screen function interface, but doesn’t
give instructions, use the following procedure:

1. Load and run the CONFIGIO program as instructed in
the “CONFIGIO” section in the beginning of this chapter.

2. When the CONFIGIO selection menu appears (see page
162), press the 1 key. CONFIGIO will display the Screen
Function Interface Menu as shown on page 167.

3. Press the 4 key.

4. Select the desired function by pressing the appropriate
key or keys.

5. When

SOFTWARE OR HARDWARE (S/H)?

appears, press the S key.

6. Type the appropriate control sequence listed by the appli­
cation program documentation.

7. Save the changes that you have made in the screen func­
tion interface. (See the following section for more infor­
mation on saving changes.)

174

I/O Configuration

Saving the Changes to the Screen Function Interface

Save the changes made in the screen function interface by first
pressing the Q key. When the main CONFIGIO menu appears,
press the 4 key. The program will display:

+ READ/WRITE I/O CHANGES MADE +

Read Or Write (R/W)?

Press the W key. The program will display:

Destination Drive (A:-D:)?

Press the A key to save the changes made in the screen inter­
face on the system disk in drive A:. The program will then
display the main CONFIGIO menu.

Using the Screen Function
Interface From Within a Program

The screen functions listed in Table 6.1, “Screen Function
Descriptions,” make it possible to write programs that perform
special screen functions. Table 6.2, “Screen Function Interface
Addresses,” shows the correspondence between the Software
and the Hardware Screen Function Tables in memory. It lists
the function number and the hexadecimal address of each
entry. The internal format of the two 11-byte tables is identical.

175

SoftCard II

Table 6.2.
Screen Function Interface Addresses

Software Hardware
Function Table
Number Address

Table Function
Address Description

0F396H 0F3A1H Cursor address coordinate
offset. Range: 0 to 127. If
the high-order bit is 0, the
X and Y coordinates are
expected to be transmitted
Y first, X last. If the high-
order bit is 1, the coordi­
nates are sent X first, Y
last.

0F397H 0F3A2H Lead-in character. This
byte is zero if there is no
lead-in character.

1 0F398H 0F3A3H Clear screen.
2 0F399H 0F3A4H Clear to end-of-page.
3 0F39AH 0F3A5H Clear to end-of-line.
4 0F39BH 0F3A6H Set normal (lowlight) text

mode.
5 0F39CH 0F3A7H Set inverse (highlight)

text mode.
6 0F39DH 0F3A8H Home cursor.
7 0F39EH 0F3A9H Address cursor.
8 0F39FH 0F3AAH Cursor up.
9 0F3A0H 0F3ABH Cursor forward.

A NUL character entry in either Screen Function Interface Table will dis­
able that function on the standard Apple screen monitor.
The standard Apple screen monitor supports all nine screen interface func­
tions, independent of the Hardware Screen Function Table. However, if a
Software Screen Function Table entry is zero, the function is disabled.
If the lead-in character of the Hardware Screen Function Table is OFF, the
entire table is bypassed.
If a numbered table entry is zero, the function is not implemented.
If the entry has 1 as the high-order bit, the function requires a lead-in character.
An entry with the high-order bit set to zero indicates that the function does
not require a lead-in character.

176

I/O Configuration

To ensure portability, the Hardware Screen Function Table
must be set up correctly for the specific terminal. The following
example lists a short segment of 8080 assembly language code
which illustrates the use of the Screen Function Tables for ter­
minal independent screen programming.

Terminal Independent Screen I/O

This routine will execute the screen function specified by E, where E
contains the screen function number from one to nine. If the function is
not implemented, the subroutine simply returns, and all registers are
destroyed.

Equates:

BDOS EQU 0005H ;CP/M function call address
SXYOFF EQU 0F396H ;Software cursor address XY coordinate offset
SFLDIN EQU 0F397H ;Software function lead-in character
SSFTAB EQU 0F398H jSoftware screen functions

SCRFUN: MVI D,0 ;Prepare for index
LXI H,SSFTAB-1 ;Point to Software Screen

;Function Table minus one
DAD D ;lndex to desired function character
MOV A,M ;Get the character
ORA A ;See if a lead-in is required
RZ ;lf the function isn’t there, quit
JP CONOUA ;lf positive, no
PUSH PSW ;Save character
LDA SFLDIN ;Get software lead-in character
CALL CONOUA ;Output character in A
POP PSW ;Get character again

CONOUA: MOV E,A ;Put character in its place
CONOUE: MVI C,2 jConsole output function

JMP BDOS ;Call CP/M BDOS at 0005H

This routine will position the cursor at the X,Y coordinates in HL.

GOTOXY: PUSH H ;Save coordinates while we do sequential
addressing

MVI E,7 ;Do an address cursor function
CALL SCRFUN
POP H ;Get coordinates back
LDA SXYOFF ;Get software XY coordinate offset
ORA A ;Set CC’s on A
JP NORVS ;Reverse coordinates if negative
MOV E,L ;Reverse H and L
MOV L,H
MOV H,E

NORVS: MOV E,A ;Save offset
ADD H ;Add offset
MOV H,A ;Save for later
MOV A,E ;Get offset again
ADD L
PUSH H ;Save all this
CALL CONOUA ;Output first coordinate
POP H ;Restore coordinates
MOV E.H ;Output second coordinate and return
JMP CONOUE

177

SoftCard II

Keyboard Character Definition

Some CP/M application programs require the use of keys
which are not available on the Apple keyboard. For example,
the Apple keyboard does not have a RUBOUT key. This can be
resolved by redefining specific keys in the Keyboard Character
Definition Table located at memory locations F3ACH through
F3B7H.

Keyboard Character Definition Table
The Keyboard Character Definition Table supports up to six
character redefinitions. Entries in the table consist of two bytes:
the first byte is the ASCII value of the keyboard character to be
redefined, and the second byte is the desired ASCII value of the
character. Both bytes must have their high-order bits cleared.

If there are fewer than six entries in the Keyboard Character
Definition Table, a byte with the high-order bit set is put at the
end of the table.

178

I/O Configuration

Redefining Keyboard
Characters With CONFIGIO

Load and run the CONFIGIO program as instructed in
the “CONFIGIO” section in this chapter. When the first
CONFIGIO selection menu appears, press the 2 key.
CONFIGIO will display the Keyboard Character Definition
Table.

To redefine a character response for a key, press the A key. To
delete an entry from the table, press the D key. Press the Q key
to return to the main CONFIGIO menu.

179

SoftCard II

When you press the A key, the CONFIGIO program displays:

CHAR:

Type the character or character sequence to be defined. The
table entry can be typed in one of the following formats:

aaa where aaa is a 2- or 3-character ASCII
name.

c where c is any character.

CONTROL-c where c is any keyboard character.

LC-c LC- indicates that the following character
(c) is lowercase. Type this in place of a
lowercase character if your keyboard has
no lowercase characters.

&H hh hh is the ASCII hexadecimal code (pre­
ceded by &H). Use this format if the char­
acter cannot be typed. See “ASCII Char­
acter Codes,” Appendix H, in the Micro­
soft BASIC Interpreter Reference Man­
ual.

Save the changes made to the Keyboard Character Definition
Table by pressing the Q key. When the main CONFIGIO menu
appears, press the 4 key. The program will display:

+ READ/WRITE I/O CHANGES MADE +

READ OR WRITE (R/W)?

Press the W key. The program will display:

DESTINATION DRIVE (A:-D:)?

Press the A key to save the changes made in the screen func­
tion interface on the system disk in drive A:. The program will
then display the main CONFIGIO menu.

180

I/O Configuration

Example

CONTROL-C can be redefined as a NUL character (ASCII
code 00) to prevent the user from exiting a BASIC program.
This is accomplished by running the CONFIGIO program and
selecting “2. Redefine Keyboard Characters” from the main
CONFIGIO menu.

When the Keyboard Character Definition menu appears, press
the A key. When the CHAR: prompt appears, type:

CONTROL-C

and press the RETURN key. If the character is acceptable, the
program prompts you to enter the new definition of the charac­
ter with an arrow as shown:

CONTROL-C -

Now type

NUL

and press the RETURN key. If your entry is not acceptable, the
computer will erase what you have just entered and wait for an
acceptable character entry.

If the entry is acceptable, the Keyboard Character Definition
menu is displayed again with the new definitions added to the
menu.

Note
If you have followed the example, you will find that you
cannot exit the CONFIGIO program with CONTROL-C.

181

SoftCard II

To delete the entry just made, type D. CONFIGIO will display
the CHAR: prompt again. Now type

CONTROL-C

and press the RETURN key. The list is displayed again with the
CONTROL-C -* NUL entry deleted.

Type Q to return to the main menu.

Notes on Keyboard Character Definition
We recommend that you delete entries to the Keyboard Charac­
ter Definition Table if they do not apply to your keyboard. For
example, if your keyboard has a RUBOUT key, you should delete
the DEL entry.

Redefining CONTROL-C as a NUL character to prevent exiting
BASIC programs with CONTROL-C is useful, but it can cause
problems at CP/M command level. CONTROL-C is used by CP/M
for a warm start.

Certain terminals and 80-column display boards perform their
own character redefinitions. For example, the VidexrM Video­
term™ display board uses CONTROL-A to switch between upper­
case and lowercase input mode. Since CONTROL-A is also used
in BASIC to enter edit mode, we recommend redefining another
character as CONTROL-A (such as CONTROL-W).

Adding Nonstandard
I/O Devices and User Software

The user patch areas and the I/O Vector Table provide a
means of using nonstandard I/O devices with CP/M or adding
special I/O software. I/O devices include printers, communica­
tion interface boards, modems, and other physical devices in
addition to terminals. I/O software can be either substitution
routines or filter routines.

182

I/O Configuration

Note
Most Apple I/O interface boards contain 6502 ROM driv­
ers. The easiest way to interface these board types to
SoftCard CP/M is to call the 6502 subroutines in the
ROM. This should be sufficient to interface most common
I/O devices to SoftCard CP/M. (See “0 CALLSUB” in
Chapter 4 for more information on calling subroutines.)

Substitution routines are the assembly language routines which
allow CP/M to communicate with nonstandard I/O devices.
(“Nonstandard” applies to any device that is not normally
configured for CP/M or Apple Pascal). Most accessory boards
will have an accompanying substitution routine for interfacing
the board to CP/M.

Substitution routines also include routines that change the
normal format of I/O data (from the I/O device) with which the
BIOS communicates. The SoftCard version of CP/M treats all
substitution routines as “type 1” vector patches. Type 1 vector
patches are user-written assembly language routines that are
not dependent on the standard BIOS routines.

Filter routines are assembly language routines that change the
input data before sending it to the standard BIOS I/O routines.
They are called filter routines because they filter the incoming
data. Filter routines are considered “type 2” vector patches.

Any I/O routines added to CP/M must be written into the des­
ignated user patch areas of the BIOS. I/O routines must have
code that alters the BIOS vector so that the BIOS vector points
to the user-written routine instead of the standard I/O routine.
If your I/O routine is a substitution type of routine, no further
action is necessary. If, however, it is a filter type, the normal
BIOS vector must be saved and placed in your routine.

183

SoftCard II

User Patch Areas
The SoftCard version of CP/M provides four 64-byte areas
for user-written I/O assembly language routines. Three of
the areas are for a certain slot. The fourth is for general
usage. Table 6.3 shows the memory location of each patch
area, the slot assignment, and the assigned logical device for
the patch area.

Table 6.3.
User Patch Areas

Address
Range

Assigned
Slot

Assigned
Logical Device

0FE00H—0FE3FH 1 LST:
0FE40H—0FE7FH 2 PUN: and RDR:
0FE80H—OFEBFH 3 TTY:
OFECOH—OFEFFH None Use for filter routines or to

continue a substitution
routine.

If there is no board installed in a particular slot, its allocated
64-byte space in the patch area can be used for other purposes
relating to its assigned logical device.

I/O Vector Table
All of the “primitive” character I/O functions used by the
Apple I/O system are performed through the I/O Vector Table.
These vectors point to the standard I/O subroutine located in
the CP/M BIOS, but can be altered by the CONFIGIO pro­
gram to point to user-installed I/O driver subroutines.

I/O driver subroutines are “patched” to CP/M by adding the
appropriate I/O vector which points to the specified subrou­
tine. Table 6.4 lists vector locations and their purposes.

184

I/O Configuration

Table 6.4.
I/O Vector Table Description

Number Address Name Description

1 0F3C0H Console Status If a character is ready,
the console status returns
OFFH in register A. If
not, OOH is returned.

2 0F3C2H Console Input
vector 1

Reads a character from
the console into the A
register with the high-
order bit clear.

3 0F3C4H Console Input
vector 2

Same as Console Input
vector 1.

4 0F3C6H Console Output
vector 1

Sends the ASCII
character in register C to
the console device.

5 0F3C8H Console Output
vector 2

Same as Console Output
vector 1.

6 0F3CAH Reader Input
vector 1

Reads a character from
the paper tape reader
device into register A.

7 0F3CCH Reader Input
vector 2

Same as Reader Input
vector 1.

8 0F3CEH Punch Output
vector 1

Sends the character in
register C to the paper
tape punch device.

9 0F3D0H Punch Output
vector 2

Same as Punch Output
vector 1.

10 0F3D2H List Output
vector 1

Sends the character in
register C to the line
printer device.

11 0F3D4H List Output
vector 2

Same as List Output
vector 1.

185

SoftCard II

Note
If a Console Output vector is specified, the B register will
contain a number corresponding to a screen function out­
put. (The B register contains zero during normal charac­
ter output.) The B register will also contain a non-zero
number during the output of the address cursor function
(X and Y coordinates) after executing screen function num­
ber 7.

Adding I/O Software to the User Patch Areas
To add I/O software to the user patch areas, you must first
create an executable COM file with the ASM and LOAD
programs. Then, load the file into the patch area with the
CONFIGIO program. CONFIGIO will also save the changes
to a CP/M system disk.

When creating the COM file, the first 11 bytes of the actual
routine must be in the format shown in Table 6.5. Only one
patch routine can be written into a patch area per COM file.
You can use as many vectors in the I/O Vector Table as desired.
Examples of patch routines are given in “Substitution I/O
Routine Example,” and “Filter I/O Routine Example,” at the
end of this section.

186

I/O Configuration

Table 6.5.
Format for User-Written Patch Routines

Byte Contents

1 The number of patches to I/O Vector Table to be
made.

2 and 3 The destination address of the patch routine.
4 and 5 The length of the routine.
6* Vector patch type which is either type 1 or type 2.

1 = substitution patch
2 = filter patch

7* The vector number (1—11) to be patched.
8 and 9* If the routine is a type 1 patch, bytes 8 and 9 contain

the address to be patched into the vector. The address
points to the user’s code.
If the routine is a type 2 patch, bytes 8 and 9 contain
the address where the current contents of the speci­
fied vector are placed. (This can be the address field
of a JMP instruction, etc.)

10 and 11* The new address to be placed in the specified vector.

* Bytes 1 through 5 are repeated for each I/O vector patch made. If there is
more than one patch made, then bytes 7 through 11 will be offset by the
number of times you repeat bytes 1 through 5.
The actual program code follows the patch information described in Table
6.5. Conversion restricts the size of the program code to 64 bytes per slot­
dependent patch area. Use the patch area appropriate for your application
and slot use. (See Table 6.3 for more information on user patch areas.)

187

SoftCard II

Steps for Adding I/O Software to the User Patch Areas

If the software already exists in a disk file, start the procedure
at step 3. If you are entering a program from the keyboard,
continue with the next step.

1. Use the DDT “S” command to enter the program into
memory at location 100H.

2. Save the program with the SAVE command by typing:

SAVE 1 files pec

and then pressing the RETURN key to execute the com­
mand.

3. Run the CONFIGIO program. When the main menu
appears, press the 3 key. The program will display:

+ + LOAD USER I/O DRIVER SOFTWARE + +

SOURCE FILE NAME?

4. Type the filespec of the file containing the I/O software
and press the RETURN key. The program will display

LOADING...

as it loads the routines from file into the user patch area.
After the routines are loaded, the program returns to the
main CONFIGIO menu.

188

I/O Configuration

5. Press the 4 key. CONFIGIO will display:

+ READ/WRITE I/O CHANGES MADE +

READ OR WRITE (R/W)?

6. Press the W key to write the I/O software into the BIOS
in memory. The program will display:

DESTINATION DRIVE (A:-D:)?

To save the changes to the BIOS on the system disk that is
in active drive, press the A key. For any other CP/M sys­
tem disk, go to step 4.

7. Insert a CP/M system disk into the appropriate drive.
Type the corresponding drive letter and press the RETURN
key. The BIOS on the disk is replaced with the one cur­
rently in memory. When the BIOS is copied into the CP/M
system tracks on the destination disk, the program returns
to the main CONFIGIO menu.

Note
Pressing the R key in step 6 permits the BIOS to be read
from the CP/M system disk and loaded into memory.
When the operation is complete, the program returns to
the I/O Configuration Program menu.

189

SoftCard II

Substitution I/O Routine Example

; Substitution routine

; This is a substitution routine for a second printer installed in the slot defined by “SLOT”.
; This routine assumes there is a CCS 7710 interface board installed in SLOT and that all
; protocol is done elsewhere.

; SLOT is the value used to build the addresses used for status and data for the CCS 7710.
; Change it to whatever slot the CCS board is in.
J
; Miscellaneous definitions:

0002 =
C0A0=
C0A1 =
FE00 =

SLOT
STAT
DATA
DEST

EQU
EQU
EQU
EQU

2
0C080H+(SLOT SHL 4)
STAT+1
0FE00H

; 6502 Subroutine call definitions

0040 = X6502 EQU 40H ;6502 transfer address
0045 = AREG EQU 45 H ;6502 register A pass area
004A = ADDR EQU 4AH ;Address to PEEK or POKE
0049 = CMD EQU 49H ;Command pass area
0002 = PEEK EQU 2 ;The PEEK command
0003 = POKE EQU 3 ;The POKE command
J

OFFSET SET DEST-UL1
0100 ORG 100H
J
; Information block for CONFIGIO

0100 01 DB 1 ;Type 1 patch
0101 00FE DW DEST ;Tells CONFIGIO where to put it
0103 2900 DW LENGTH ;How many bytes to store
0105 01 DB 1 ;Type 1 patch
0106 0B DB 11 ;Patch list out vector 2 (UL1 :)
0107 00FE DW DEST ;Address to patch into vector

;table
J
; The actual driver

0109 3E02 UL1: MVI A,PEEK ;Do a PEEK command
010B 324900 STA CMD ;Store the command
010E 21A0C0 LXI H,STAT ;Th is is the address we want to

;read
0111 224A00 SHLD ADDR ;Store the address
0114 CD4000 CALL X6502 ;Go read the 6502 memory

location
0117 3A4500 LDA AREG ;Get the result
011A E602 ANI 2 ;Mask status bit

190

I/O Configuration

011CCA00FE JZ UL1+OFFSET ; If zero, then character not ready
;to send

011F 79 MOV A,C ;Get the character
0120 324500 STA AREG ;Store it for the 6502
0123 3E03 MVI A,POKE ;POKE this byte
0125 324900 STA CMD ;Store the command
0128 21A1C0 LXI H,DATA ;Th is is the address we want to

;write
012B 224A00 SHLD ADDR ;Store the address
012E CD4000 CALL X6502 ;Go POKE the output byte
0131 C9 RET ;And go home

0029 = LENGTH EQU $-UL1
0132 END

Filter I/O Routine Example

; nolf - eliminate extra linefeeds

; This program removes linefeeds from a CR-LF sequence sent to the printer.

0100
ORIGIN
OFFSET

ORG
SET
SET

100H
0FE3FH-LENGTH
ORIGIN-NOLF

;Origin for ASM
;True origimend

0100 01 DB 1
J
;Number of patches

0101 2BFE DW ORIGIN ;Place to put code
0103 1400 DW LENGTH ;Length of code
0105 02 DB 2 ;Type of patch
0106 0A DB 10 ;Vector to change
0107 3DFE DW NOTCR+OFFSET+1 ;Place to put old vector contents
0109 2BFE DW ORIGIN ;New vector contents

010B 00 CRFLAG DB 0
J
;Last character to pass
jthrough

010C212AFE NOLF: LXI H,CRFLAG+OFFSET ;Point to crflag
010F 7E MOV A,M ;Get last character
0110 71 MOV M,C ;Save current character
0111 FE0D CPI 13 ;Last char a cr?
0113 C23CFE JNZ NOTCR+OFFSET ;No...just pass through
0116 79 MOV A,C ;Get current character...
0117 FE0A
0119 C8

CPI
RZ

10 ; Is it a line feed?
;Yes...don’t print it

011A FE0D
011CC8

CPI
RZ

13 ; Is it another cr?
;Yes...don’t print it

011D C30000 NOTCR: JMP 0000 ;This address patched
;by CONFIGIO

0014 =
0120

LENGTH EQU
END

S-NOLF

191

SoftCard II

I/O Device Protocols for
Assembly Language Programs

The I/O device protocol is similar to that supported by Apple
Pascal, release 1.0, which requires the installation of accessory
board types in specific accessory slots. Table 6.5 shows the
required slot assignments. In addition to the standard Apple
I/O devices, the SoftCard implementation of CP/M supports
many other I/O devices.

Note
Contact your dealer or Microsoft Corporation to determine
which I/O devices are compatible with the SoftCard II
system.

192

I/O Configuration

Accessory Slot Addresses and Assignments
Table 6.6.

Slot
Acceptable
Board Type Slot Address

1 2,3,4,6 C100H—C1FFH
2 2.3.4.6 (input)

1.2.3.4.6 (output)
C200H-C2FFH

3 2,3,4,6 C300H—C3FFH
4 Any type C400H—C4FFH
5 2 C500H-C5FFH
6 2 C600H—C6FFH
7 Any type C700H-C7FFH

Type 1 is an unknown board type.
Type 2 is Apple 11 Disk Controller.
Type 3 is an Apple Communications Interface board or California Computer
Systems * 7710AtM Serial Interface board.
Type 4 is an Apple High-Speed Serial Interface board or Apple Silentype®
interface board.
Type 5 is an Apple Parallel Printer Interface board.
Type 6 is an Apple Firmware board.

Slots Type Table
The programmer may access the Slots Type Table from within
a program. The table is located at addresses F3B9H through
F3BFH.

When CP/M is loaded into memory with a cold start, each of
the Apple I/O accessory slots is checked to see if a standard
Apple peripheral board is installed. This is done by checking to
see if there is ROM present in the slot-dependent address allo­
cated for accessory board ROMs and then comparing two
signature bytes to those of the standard Apple I/O peripheral
boards.

193

SoftCard II

This information is then stored in the Slots Type Table, which
is located at 3B8H in the I/O Configuration Block. There are
seven bytes in the Slots Type Table, each byte corresponding
to the seven slots from one to seven. The value of a table entry
may range from zero to six. The meaning of each value is as
follows:

Value Explanation

0 No peripheral board ROM was detected which
usually means that no board is installed in the
slot.

1 A peripheral board ROM was detected, but it is
of an unknown type.

2 An Apple Disk H Controller board is installed in
the slot.

3 An Apple Communications Interface board or
CCS 7710A Serial Interface board is installed
in the slot.

4 An Apple High-Speed Serial Interface, Videx
Videoterm, M&R Sup’R Terminal or Apple Si-
lentype printer interface is installed in the slot.

5 An Apple Parallel Printer Interface is installed
in the slot.

An Apple Firmware Card is installed in the
slot.

Disk Drive Byte

Disk drive byte is a single byte for monitoring the number of
disk drives in the system. The byte is equal to the number of
disk controller boards in the system multiplied by two. This
value does not reflect an odd number of disk drives such as only
one drive connected to a controller board. The disk drive byte is
located at Z80 address F38BH.

194

Appendix A
Error Messages

This appendix lists in alphabetical order the error messages
for the SoftCard implementation of CP/M. Each error message
includes the possible causes and what actions you may take in
response to them. In each of the error message descriptions, d:
represents the disk drive identifier (A:-D:).

Aborted
Cause. PIP stopped; a key was pressed by the user.
Action. Retry the command.

Bad Delimiter
Cause. The wrong delimiting character was used in the STAT
command line.
Action. Check for typing errors and try the command again.

BDOS ERR ON d: Bad Sector
Cause. An attempt was made to execute a command (built-in
or transient) when:

There was no disk in the specified drive

The drive door was not closed

The disk was inserted into the specified drive improperly

The drive was not connected to a disk controller board
(see SELECT error)

The disk was damaged or worn

Action. Correct the error condition. Then press the CONTROL-C
keys to perform a warm start. Retry the command.

195

SoftCard II

BDOS ERR ON d: File R/O
Cause. A write operation was attempted to a file that has a
Read Only (R/O) attribute.
Action. Type any character to perform a warm start and
return to CP/M command level.

BDOS ERR ON d: R/O
Cause. The disk in the accessed drive was changed without
pressing CONTROL-C; or there is a write-protect tab on the disk.
Action. Press any key to perform a warm start and return to
CP/M command level.

BDOS ERR ON d: Select
Cause. An attempt was made to access a disk drive when either
the drive was not connected to a controller, or the controller has
been installed in the wrong accessory slot.
Note that if you have only one drive attached to a disk con­
troller board, an attempt to access a drive that is not installed
results in a BAD SECTOR error instead of a SELECT error.
Action. Press any key to perform a warm start and return to
CP/M command level.

Cannot Close Destination File-filespec
Cause. The output file specified in the PIP command line can­
not be closed. This is usually caused by a write-protect tab on
the disk.
Action. Remove the write-protect tab from the disk and try the
command again.

196

Error Messages

Cannot Close File
Cause. A write operation has been attempted to a disk that has
a write-protect tab on it.
Action. Make sure the disk is not write-protected and try the
command again.

Cannot Read
Cause. The PIP program cannot read the source device speci­
fied in the command line.
Action. Check the RDR: device assignment and the physical
connections to the current reader device.

Cannot Write
Cause. An invalid destination device was specified in the PIP
command line.
Action. Check the device assignments and retry the command.

Checksum Error
Cause. PIP encountered a hex checksum record error while
copying a hex file.
Action. Recreate the hex file with an assembler program and
retry the command.

Checksum Error Load Address ...
Cause. The file specified in the LOAD command line contains
errors.
Action. Recreate the hex file with an assembler program and
retry the command.

Command Buffer Overflow
Cause. There are too many characters in the SUBMIT com­
mand buffer.
Action. Make sure that the submit input file doesn’t exceed
2048 characters.

197

SoftCard II

Command Error
Cause. Either there is a syntax error in the command line or
the command is not understood (i.e., the arguments in the
command line were not recognized by the program). Command
Error is generated by utility programs written by Microsoft.
Action. Retype the command line in the correct format and
retry the command.

Command Too Long
Cause. A command in the submit input file is longer than 125
characters.
Action. Check the commands in the submit input file and re­
submit the input file.

Correct Error, Type Return or CTRL-Z
Cause. A hex record checksum error was encountered during
the transfer of a hex file by PIP.
Action. Correct the hex file and retry the command.

Destination is R/O, Delete (y/n)
Cause. The destination file specified in the PIP command line
is designated R/O.
Action. Enter Yto delete the existing file and PIP will complete
the copy process. Enter N to abort the copy process.

Directory Full
Cause. An attempt was made to copy files to a destination disk
which has no more storage space.
Action. Insert another disk in the destination drive and retry
the command.

Disk Full
Cause. An attempt was made to copy files to a destination disk
which has no more storage space. This error message is gener­
ated by the APDOS or MFT programs.
Action. Insert another disk in the destination drive and retry
the command.

198

Error Messages

Disk I/O Error
Cause. The COPY program cannot format the disk. This is
caused by either a bad or a worn-out disk, or the disk drive door
is not closed.
Action. Ensure that the disk drive door is closed. If the same
error message appears, replace the disk.

Disk Read Error
Cause. The source file specified in the PIP command contains
an end-of-file character in the wrong place.
Action. Make sure that the end-of-file character is in the right
place.

Disk Write Error
Cause. A disk write operation was attempted to a full disk.
Action. Either erase some files or try the write operation with
another disk.

Disk Write-Protected
Cause. An attempt was made to write to a disk that has a
write-protect tab on it. This error message is generated by the
APDOS and COPY programs.
Action. Remove the write-protect tab from the disk and retry
the command.

Error:Bad Parameter
Cause. There is an illegal parameter in the PIP command line.
Action. Check the command line and retry the command.

Error:Cannot Close File, Load Address xxxx
Cause. An error exists in the program being loaded with the
LOAD program. The disk may be write-protected.
Action. Check the source program for errors. Check the disk for
a write-protect tab.

199

SoftCard II

Error:Cannot Open Source, Load Address xxxx
Cause. The LOAD program cannot find the file specified in the
LOAD command line; or no filename was specified.
Action. Check the filename of the source file to be loaded. Make
sure the filename is included in the LOAD command line.
Retry the command.

Error:Disk Inverted, Load Address xxxx
Cause. The address of a record was too far from the address of
the previously processed record.
Action. Use DDT to read the hex file into memory, then use the
SAVE command to store the file back to the disk. Retry the
LOAD command.

Error:Disk No More Directory Space, Load Address xxxx
Cause. The destination disk in the active drive is full.
Action. Change disks and retry the command.

Error:Disk Read, Load Address xxxx
Cause. The file specified in the LOAD command line cannot be
found on the disk.
Action. Check to see that the file exists on the disk in the active
drive.

Error:Disk Write, Load Address xxxx
Cause. The destination disk in the active drive is full.
Action. Change disks and retry the command.

Error On Line nnn
Cause. There is an error in the submit input file at the specified
line number (nnn).
Action. Correct the error and retry the command.

200

Error Messages

File Error
Cause. The disk is full and the ED program cannot write any
more data to the accessed file.
Action. Copy the file to another disk or delete other files from
the same disk.

File Exists
Cause. An attempt was made to change the name of a file to an
existing filename.
Action. Make sure the “new" filespec argument in the REN
command line does not match any existing filenames on the
same disk. Retry the command.

File Exists, Erase It
Cause. The destination file named in the ED command line
already exists.
Action. Place the destination file on another disk or in a differ­
ent user area.

File Is Read Only
Cause. The file specified in the ED command line has an R/O
attribute.
Action. Change the file status with the STAT program.

File Not Found
Cause. The source file specified in the APDOS, AUTORUN,
CAT, COPY, MFT, PATCH, or STAT command line does not
exist.
Action. Check the spelling of the filename and reenter the
command line.

201

SoftCard II

Filename?
Cause. An incorrect use of wild card characters in the REN
command line.
Action. Retry the command with no wild card characters in the
command line.

Filename Required
Cause. ED was invoked without a filename argument in the
command line.
Action. Include a filename in the ED command line.

hhhhTl = dd
Cause. The mnemonic (dd) at address (hhhh??) is not an 8080
or Z80 assembly language instruction.
Action. Correct the mnemonic.

Insufficient Memory
Cause. There is not enough memory available to load the speci­
fied file with the DDT R or E command.
Action. Reduce the size of the file and load in segments of the
file.

202

Error Messages

Invalid Assignment
Cause. One of the device names specified in the STAT com­
mand line is either misspelled or cannot be assigned to the
other specified device.
Action. Check the spelling of the device name and retry the
command. If the same error message appears again, check for
the valid device assignments by typing STAT VAL:.

Invalid Control Character
Cause. An invalid CONTROL character was included in a sub­
mit input file.
Action. Use only ^A through CONTROL characters in a
submit input file.

Invalid Digit
Cause. The hex file specified in the PIP command line contains
an invalid hex digit.
Action. Correct the hex file and retry the PIP command.

Invalid Disk Assignment
Cause. An attempt was made to assign an attribute other than
R/O to a disk drive with the STAT program.
Action. Assign only the R/O attribute to disk drives. Remove
the R/O attribute with the STAT program.

Invalid Disk Select
Cause. A command line specified a nonexistent disk drive.
Action. Specify only disk drives A: through D: in the command
line. Check for any loose connections to the disk drives and for
unformatted disks.

Invalid File Indicator
Cause. STAT did not recognize the attribute in the STAT com­
mand line.
Action. Specify only R/O, R/W, DIR, or SYS in the STAT
command line.

203

SoftCard II

Invalid Format
Cause. The PIP command line was in the wrong format.
Action. Check the command line format and retry the com­
mand.

Invalid Hex Digit...
Cause. The file specified in the LOAD command line contains
an incorrect hex digit.
Action. Correct the file and retry the command.

Invalid Separator
Cause. An invalid separator character was used in the PIP
command line.
Action. Check the command line format and retry the com­
mand.

Invalid User Number
Cause. An invalid user number was specified in the PIP com­
mand line.
Action. Use only user numbers 1 through 15.

n?
Cause. A number greater than 15 was specified in the USER
command line.
Action. Use only user numbers 1 through 15.

No Directory Space
Cause. There is no room on the disk for the .PRN and .HEX
files generated by ASM.
Action. Either delete files from the active drive or specify
another drive.

No File filespec
Cause. The file specified in the command line cannot be found.
Action. Recheck the spelling of the filespec and try again.

204

Error Messages

No File(s) Found, xxxk Bytes Available
Cause. The file specified in the CAT command line does not
exist.
Action. Check the spelling of the filename and reenter the
command line.

No Input File Present On Disk
Cause. The file specified in the DUMP command line does not
exist.
Action. Recheck the spelling of the filespec and try again.

No Source File Present
Cause. The ASM assembler could not find the file specified in
the command line.
Action. Check spelling of the file and ensure that the disk is
listed in the disk directory. Retry the command.

No Space
Cause. An attempt was made to save the contents of memory
with the SAVE command, but there is no space left on the disk.
Action. Use a disk with sufficient storage space and retry the
command.

No Sub File Present
Cause. The SUBMIT program was run but no submit input
file was specified.
Action. Create a submit input file.

Not A Character Source
Cause. An invalid source device was specified in the PIP
command line.
Action. Use either RDR: or CON: as source devices.

205

SoftCard II

Not Deleted
Cause. The file specified in the PIP command line has an R/O
attribute and cannot be deleted.
Action. Change the status of the file with the STAT program.

Not Found
Cause. PIP cannot find the file specified in the command line.
Action. Check the spelling of the file and try again.

Output File Write Error
Cause. Either a file with write-protect status has been speci­
fied as the ASM destination file, or there is no free space left on
the disk.
Action. Check the attributes of the destination file and the
amount of free disk space with the STAT program.

Parameter Error
Cause. The submit input file contains an invalid parameter.
Action. Use only valid parameters ($0 through $9) in the sub­
mit input file.

Quit Not Found
Cause. The Q parameter was specified in the PIP command
line but there is no string argument in the input file.
Action. Insert the appropriate string argument in the input file
specified by PIP.

Read Error
Cause. The file specified in the TYPE command line contains
an error.
Action. Use the STAT program to check the disk and the file.
Retry the command.

206

Error Messages

Reader Stopping
Cause. The read operation from the RDR: device has been
interrupted. (A key was pressed during the read operation.)
Action. Retry the command.

Record Too Long
Cause. The file or device specified in the PIP command line
contains a record longer than 128 bytes.
Action. Use the STAT program to check for any records longer
than 128 bytes.

Source File Name Error
Cause. Wild card characters * and ? were specified in the
source filename argument of the ASM command line.
Action. Specify only one source filename in the ASM command
line.

Source File Read Error
Cause. The file read by the ASM assembler is in the wrong
format or has instructions the ASM assembler cannot under­
stand.
Action. Check the file for the proper format and check that the
assembly language instructions are 8080 mnemonics.

Start Not Found
Cause. PIP cannot find the string argument in the input file
specified by the S parameter.
Action. Check the input file for the appropriate string argu­
ment.

Too Many Files
Cause. STAT cannot process the files specified. Either there
are too many files (more than 512), or there is not enough free
RAM available to process the files.
Action. Delete or transfer files to another disk. Retry the com­
mand and specify fewer files.

207

SoftCard II

Unexpected End Of Hex File filespec
Cause. The hex file specified in the PIP command line contains
an end-of-file character before a termination hex record.
Action. Correct the hex file and retry the command.

Unrecognized Destination
Cause. PIP did not recognize the destination file or device
specified in the command line.
Action. Make sure that the destination device is a currently
assigned device, or that the destination file exists.

Use: STATd:=R/O
Cause. The drive argument (a?:) in the STAT command line was
used in the wrong format.
Action. Use the proper format (STAT o?:=R/0) for the drive
argument.

Verify Error
Cause. The data copied onto a destination disk does not match
the data on the source disk. This is caused by a worn or
damaged disk, or by hardware problems. The VERIFY ERROR
message is generated by the COPY and PATCH transient
programs.
Action. Try using a different disk and repeat the command. If
the same error message appears again, check the connections
to the disk drives and the disk controllers. If there is a hard­
ware problem, contact your dealer.

? (Syntax error)
Cause. The command was not understood. Either the command
was mistyped, or invalid arguments were included in the com­
mand line.
Action. Retype the command line in the correct format.

208

Appendix B
SoftCard Version Differences

SoftCard Enhancements 211
CP/M Implementation Differences 211
SoftCard Differences 212

Differences in Hardware 212
Differences in Software 213
Differences in I/O Operation 214

209

SoftCard Version Differences

This appendix describes the differences between the SoftCard
II system and earlier ones.

SoftCard II Enhancements

Because of the Apple I/O interface and dual microprocessor
environment, the SoftCard implementation of CP/M has the
following enhancements:

Patch areas in the BIOS for adding user-written I/O
driver software

A screen function interface for modifying the screen attri­
butes for a specific terminal or program

A character redefinition table for redefining the ASCII
characters produced by the keys

A type-ahead buffer for keyboard entry while CP/M is
performing other operations

A print buffer that allows the printing of a file while
performing other operations

Up to 58.5K bytes of memory for application programs

CP/M Implementation Differences

The SoftCard version does not include the MOVCPM or the
SYSGEN utilities. Because the SoftCard implementation of
CP/M is a “fixed” size, and SoftCard COPY program allows
you to put CP/M onto another disk, there is no need for either
utility.

211

SoftCard II

SoftCard Differences

The SoftCard II system has several features that the previous
SoftCards do not have. There are also differences in the way
the SoftCard II system performs I/O functions.

The following features are unique to the SoftCard II and the
Premium SoftCard He.

A type-ahead buffer for keyboard entry while CP/M per­
forms other operations

A print buffer that allows printing of a file while CP/M
performs other operations

Differences in Hardware
The SoftCard II circuit board contains a Z80B microprocessor
which operates three times as fast as those for previous Soft-
Card circuit boards. The Z80B is not synchronized or phase-
locked to the Apple //e internal clocks.

The SoftCard II circuit board can be installed in any accessory
slot.

There are no switches on the SoftCard II circuit board.

212

SoftCard Version Differences

Differences in Software
The SoftCard II has a larger TPA (58.5K bytes) for running
programs.

Because all memory is contained on the SoftCard II circuit
board, there is no need to change the size of CP/M. Therefore,
the SoftCard II package does not include the CPM60 utility
program.

There is no I/O Configuration Block (IOCB). Some of the Soft-
Card II I/O configuration tables and routines are located in
different areas of the BIOS and not in a contiguous block.

The screen menus in the CONFIGIO utility program have
been changed.

The Microsoft BASIC Interpreter has been condensed into one
file (GBASIC.COM). High-resolution graphic commands are
available whenever BASIC is running.

Because of the Z80B microprocessor, programs running under
the SoftCard II version of CP/M execute three times faster
than programs running under previous SoftCards.

213

GBASIC.COM

SoftCard II

Differences in I/O Operation
The SoftCard II uses a method of accessing the I/O system
that differs from the previous SoftCards. The SoftCard Z80
microprocessor uses the 6502 as an I/O processor and the
Apple memory for I/O communications. Therefore, it is not
possible with the SoftCard II version of CP/M to directly
access Apple I/O memory locations.

Note
The previous SoftCards access I/O functions directly
through memory-mapped locations in the Apple’s memory
and do not use the 6502 except to call 6502 subroutines.

The SoftCard II calls 6502 routines differently than previous
SoftCards. The Z80 performs I/O operations through the 6502
microprocessor by accessing a program called the “6502 Basic
Input/Output System,” or 6502 BIOS. There are 15 separate
functions. All are accessed by storing information in a seven­
byte area located at 45—4B, and then performing a Z80 CALL
instruction to memory location 40. Information from the I/O
system is returned to the same seven-byte area.

214

Appendix C
80-Column
Operation and the SoftCard II

Apple //e Computers With No
80-Column Video Display Boards 217
Apple][and][Plus Computers 217

80-Column Video Output 217
Keyboard Character Redefinition 218

215

80-Column Operation and the SoftCard II

This appendix explains what you should know about using the
SoftCard II system with the 80-column video display for Apple
][(and][Plus) and earlier Apple //e computers with no built-in
80-column display boards. If you have an Apple //e with built-
in 80-column display features, you may disregard this appen­
dix.

Apple //e Computers With No
80-Column Video Display Boards

If you have an Apple //e with no 80-column video display
board, we recommend using the Apple 80-Column Text Card or
Extended 80-Column Text Card. The SoftCard may be installed
in accessory slot 3. Otherwise, SoftCard operation is the same.

Apple II and 11 Plus Computers

80-Column Video Output
The Apple][and H Plus computers cannot display 80-columns
on a terminal screen unless you install an 80-column display
board. Because some display boards use a separate output jack
for 80-column output, you may have a problem sending graphic
output to the screen.

To solve this problem, you may have to physically switch the
output video jacks or use a “soft switch” as the one provided by
the Videx Videoterm board. (A soft switch permits you to
switch outputs through software commands.)

217

SoftCard II

Keyboard Character Redefinition
The Apple][keyboard cannot generate certain characters
without hardware modifications. The SoftCard II system com­
pensates for this condition by allowing you to redefine the
output of up to six keys with the CONFIGIO utility program. $ _
(See “Redefining Keyboard Characters With CONFIGIO” in
Chapter 6.) Before redefining any of the keys, check to see if
any character definitions are being made by your application
program or by the 80-column video board you installed. The
technical manual for the product should tell you if it does.

Special Note for Videx Videoterm Display Board Users

There are two characters the Videoterm display board
cannot use as input: CONTROL-A and CONTROL-K.

The Videoterm board uses CONTROL-A to switch between
uppercase and lowercase characters. Because the board
uses CONTROL-A internally, it cannot directly generate
this character for application programs. If your appli­
cation program requires CONTROL-A for input, use
CONFIGIO to redefine another character as CONTROL-A.

Because CONTROL-K is translated by the Videoterm board
as a left square bracket ([), CP/M will display a “[” when­
ever you type CONTROL-K. If your program requires a
CONTROL-K as input, use CONFIGIO to translate the
“[” back to CONTROL-K. In this way, when you type
CONTROL-K, you will receive a CONTROL-K, even though it
requires two separate stages of translation.

218

Appendix D
CP/M ProFile

What You Need to
Install CP/M on Your ProFile 4
Formatting the ProFile 5
Creating a Pascal Area on the Pro File 7
Creating the CP/M Hard Disk Volume 9
Copying ProDOS onto the ProFile 11
Copying CP/M Programs
into the CP/M Hard Disk Volume 13
How to Start CP/M from the ProFile 14

1

CP/M Pro File

This appendix will show how to install and use CP/M on the
Apple Pro File hard disk drive. To install CP/M on the Pro File,
follow these steps:

1. Set up the ProFile and format it.

2. Allocate space on the Pro File by creating a Pascal area
and hard disk volume.

3. Copy ProDOS and CP/M to the Pro File. (Pro File will not
work properly without ProDOS.)

Appendix D is organized for both new and experienced Pro File
users. If you are a new user, we recommend going through all
the procedures listed in this section. If you are an experienced
Pro File user, follow the procedures that apply to your situation.
For example, if you already have formatted the ProFile and
have created a Pascal area, skip the first two procedures and
continue with the third.

3

Premium SoftCard Ile/SoftCard II

What You Need to
Install CP/M on Your Pro File

In addition to the SoftCard circuit board and the items listed in
the ProFile Owner's Manual, you will need the following disks:

• Apple PPM Startup disk

• Apple PPM Program disk

• Apple ProDOS User’s disk

• Microsoft SoftCard Pro File disk

• Microsoft SoftCard Master disk

Before you start the following procedure, make sure that your
ProFile is set up and operational as described on pages 1
through 16 in the ProFile Owner's Manual. For systems that
have only one floppy disk controller card, install the ProFile
interface card in slot 5. If you have two floppy disk controller
cards in slots 5 and 6, install the ProFile interface card in slot 4.
You may have to move the SoftCard to a different slot to
accomplish this. Table 2.1 in Chapter 2 of the Installation and
Operation Manual lists the slots available for the SoftCard.

Note
The following procedures assume that you have only one
floppy disk drive. Certain steps ask you to “swap disks”
(remove one disk and insert another). If you have more
than one drive, you may use the additional drives instead
of swapping disks. The software will automatically search
all drives until it finds the file you specified.

4

CP/M Pro File

Formatting the Pro File

Formatting not only prepares the Pro File to receive informa­
tion but also deletes all data previously stored on it. If you
already formatted the ProFile and have data that you don’t
want to lose, skip steps 4 through 11.

1. Turn on the ProFile power switch, and wait for the light
on the front of the drive to stop blinking.

2. Insert the ProDOS User’s disk into drive A.

3. Turn on the video monitor and the computer. When
ProDOS is loaded into memory, the screen displays the
ProDOS Main menu as shown in the figure below:

PRODOS USER’S DISK

COPYRIGHT APPLE COMPUTER, INC. 1983

YOUR OPTIONS ARE:
? - TUTOR: PRODOS EXPLANATION
F - PRODOS FILER (UTILITIES)
C - DOS <-> PRODOS CONVERSION
S - DISPLAY SLOT ASSIGNMENTS
T- DISPLAY/SET TIME
B - APPLESOFT BASIC

PLEASE SELECT ONE OF THE ABOVE

Figure D.l ProDOS Main Menu

4. Enter F from the Main menu. The screen will display the
ProDOS Filer menu.

5. Enter Vfrom the Filer menu. The screen will display the
Volume Commands menu.

5

Premium SoftCard Ile/SoftCard II

6. Enter F (for Format a Volume), and the screen will dis­
play a message asking you to type in a slot number.

7. Enter the slot number the ProFile interface card is in
(either slot 4 or 5). Another message on the screen will ask
you for a new volume name.

8. To assign your ProFile a volume name, type /PROFILE
and press the RETURN key. You will see the message

DESTROY ‘7PROFILE”?(Y/N)

WARNING: YOU ARE ABOUT TO FORMAT A LARGE DISK.

9. Press the Y key to begin the format process. When the
Pro File is formatted, you will see

FORMAT COMPLETE

10. Press the ESC key twice to return to the ProDOS Systems
Utilities Filer menu.

11. Quit the Filer menu by pressing the Q key and then the
RETURN key. The display will show the ProDOS Main
menu again.

The ProFile is now formatted and can be partitioned into
different storage areas. The next task is to create a Pascal area
on the Pro File.

6

CP/M Pro File

Creating a Pascal Area on the Pro File

The next stage of transferring CP/M to your Pro File is creat­
ing a Pascal area on the ProFile and then a hard disk volume.
A Pascal area is an area of the disk allocated for the Pascal
operating system. Because CP/M uses a disk storage format
similar to Pascal, the area allocated for CP/M must be within
the Pascal area. A hard disk volume is a smaller storage unit
within the Pascal area. Each hard disk unit is equivalent to a
floppy disk, but of a variable size. Hard disk volumes are
explained in the “Creating a Hard-Disk Volume” section of the
Pascal ProFile Manager Manual,

The following steps will show you how to create a Pascal area
on the Pro File, assuming that the Pro File is already formatted.

1. Insert the PPM Startup disk into floppy disk drive A
(Apple drive 1).

2. Turn on the video monitor and the computer. When you
see the message

Insert boot disk
with SYSTEM.PASCAL on it,
then press RETURN.

remove the startup disk from drive A and insert the PPM
Program disk in its place. Press the RETURN key.

Note
If you have two or more disk drives, you can leave
the startup disk in drive A and insert the program
disk into drive B.

7

Premium SoftCard Ile/SoftCard II

3. When you see the message

Assign volumes to their default number? (Y/N)

type N. You will first see the message

Loading Pascal ProFile Manager....

followed by the PPM menu display as shown in Figure
D.2.

Pascal ProFile Manager Copyright 1983 Apple Computer, Inc. Version 1.0

Type the first letter to select an option. Option?

V(olume Manager program

X(tended Filer program

B(ackup program

C(reate a Pascal Area on the ProFile

D(elete Pascal Area from the ProFile

Q(uit

Figure D.2 Pascal ProFile Manager Display

4. Press the C key to create a Pascal area on the Pro File.

5. When you see the message

Create a Pascal Area ... Create Pascal area on which drive?
(Enter number.)

Enter 0 and press the RETURN key. (Drive 0 is the Pro File.)
After the PPM program creates the Pascal area, the screen
will show the PPM Main menu display again. Continue
with the next procedure ’’Creating the CP/M Hard Disk
Volume.”

8

CP/M Pro File

Creating the CP/M Hard Disk Volume

The following steps create a hard disk volume for CP/M.

Note
This procedure assumes that you have just completed the
previous procedure. If not, insert the PPM disk into drive
A and turn on the computer. You should see the PPM
Main menu.

1. Create a hard disk volume by entering a Vfrom the PPM
Main menu.

When you press the V key, the display shown in Figure
D.3 will appear.

Volume Manager Copyright 1983 Apple Computer, Inc. Version 1.0

A(ssign, R(elease, C(reate, D(elete, W(Prot, M(odify, K(runch, N(ext Q(uit

ProFile drive: 0

WP Name Description Unit

Figure D.3 Pascal ProFile Volume Manager Display

9

Premium SoftCard Ile/SoftCard II

2. Select the Create command by pressing the C key. The
screen will display the message:

Create a volume...What is the name of this volume?

3. Type

CP/M

and press the RETURN key. The program will respond with
the message:

What is the description field?

4. Type

CAT

and press the RETURN key. The description field contains
the name of the CP/M file you wish to automatically exe­
cute when the system is booted. The CP/M CAT command
displays a directory of files and the amount of volume
space available. CAT is given as an example, but you may
use other command filenames as well.

When you press the RETURN key, the program displays the
message:

What is the size of this volume in blocks?

5. You may enter a value equal to [(64 * x) + 1], where x is any
number from 1 to 48. The minimum size then is 65 and the
maximum is 9473: (64 * 48) + 1 = 9473. To create a volume
of the maximum size, type

9473

and press the RETURN key. Note that it will take several
minutes for the ProFile to create a large volume.

Now instead of sorting through a pile of floppy disks
when you want to use a program, you will go to the
Volume Manager to select the volume you want to use.

6. Press the Q key to quit the Volume Manager program. The
PPM Main menu display will appear on the screen.

10

CP/M ProFile

Copying ProDOS onto the Pro File

The following steps copy the ProDOS operating system onto
the ProFile disk and software that allows the ProFile to com­
municate with the SoftCard. This procedure assumes that you
have just completed the previous procedure. You should have a
Pascal area with a hard disk volume named CP/M on the disk.

1. Insert the ProDOS User’s disk into drive A.

2. Turn the computer’s power switch on. When ProDOS is
loaded into memory, you should see the ProDOS Main
menu.

3. Enter F (for Filer menu) from the Main menu.

4. When you see the Filer menu display, press the F key. You
should see a list of file commands.

5. Enter C from the list of file commands. The screen will
display

-COPY­
PATHNAME: ()

TO PATHNAME:

6. Type

/USERS.DISK/=

and press the RETURN key.

7. Type

/PROFILED

and press the RETURN key. The screen will display the
following:

-COPY­
PATHNAME: /USERS.DISK/=

TO PATHNAME: /PROFILE/^

-INSERT DISKS AND PRESS <RET>-

11

Premium SoftCard Ile/SoftCard II

8. Remove the ProDOS User’s disk and insert the SoftCard
ProFile disk into drive A. Press the RETURN key.

9. Type

/MICROSOFT/SOFTCARD.SYSTEM

and press the RETURN key. The screen will display:

-COPY­
PATHNAME: /MICROSOFT/SOFTCARD.SYSTEM

TO PATHNAME: ()

10. Type

/PROFILE/SOFTCARD.SYSTEM

and press the RETURN key. The screen will display the
following:

-COPY­
PATHNAME: /MICROSOFT/SOFTCARD.SYSTEM

TO PATHNAME: /PROFILE/SOFTCARD.SYSTEM

-INSERT DISKS AND PRESS <RET>-

11. Press the RETURN key. The screen will display the Filer
menu again.

12. Exit the ProDOS Filer program by pressing the Q key.

13. Type

-/MICROSOFT/SOFTCARD. INIT

and press the RETURN key. This utility initializes the
entire CP/M directory and performs other one-time house­
keeping chores. The CP/M hard disk volume is ready for
you to copy the CP/M operating system and programs
onto the ProFile.

14. Type

-/MICROSOFT/SOFTCARD.SYSTEM

and press the RETURN key.

12

CP/M Pro File

Copying CP/M Programs
into the CP/M Hard Disk Volume

The following steps copy the SoftCard Master disk into the
CP/M hard disk volume on the ProFile.

1. Insert the SoftCard Master disk into drive A.

2. Perform a cold start by turning the computer off and then
on again.

3. When you see the CP/M A: prompt, type

PIP C:=A:

if the Pro File disk controller is in slot 5, or type

PIP E:=A:

if the Pro File disk controller is in slot 4.

4. Press the RETURN key to start the copy process. This
should take about a minute to complete.

5. When you see the A> prompt again, change the active
drive to the Pro File by typing either

or

E:

depending on which slot the ProFile controller card is in.
When you see the Pro File driver letter, use the CAT com­
mand to verify that all CP/M files from the master disk
have been copied over.

This completes the last procedure for preparing the Pro File for
CP/M.

13

Premium SoftCard Ile/SoftCard II

How to Start CP/M from the Pro File

When you turn the computer on, it will automatically look for a
ProDOS Startup file and execute ProDOS. When you see the
ProDOS prompt, type

-SOFTCARD.SYSTEM

and press the RETURN key. If you used CAT in the description
field, you should see a list of CP/M files from your SoftCard
Master disk and a CP/M prompt (either C: or E: depending on
which slot the disk controller card is in).

You may now use the CP/M operating system and CP/M appli­
cation programs as described in the rest of the softcard docu­
mentation and the application program manuals.

14

Glossary

Access
An operation to obtain data from or place data into a storage
device, register, or memory.

Accessory board
A printed circuit board installed in the accessory slots of the
Apple //e computer. It usually performs as an interface to I/O
devices.

Active drive
The disk drive that all disk file operations are performed from
or to if no other drive is specified. Also called the currently
logged drive.

Address
A number representing a location where information is stored
or where an I/O device is located.

Alphanumeric
Characters which include the letters of the alphabet, numerals,
and other symbols used for punctuation and mathematical
operations.

Ambiguous filename
A filename containing wild card characters in the filename or
in the filename extension. An ambiguous filename is used to
refer to more than one file at a time.

ANSI
American National Standards Institute. An organization de­
voted to establishing industry standards for computing and
data processing.

219

SoftCard II

Argument
A user entry in the command line of a command or program
statement. Also called option, user entry, or parameter.

Assembler
A program that translates symbolic assembly language into
binary machine language for execution by the computer.

Backup disk
A disk that contains information copied from another disk. It
is used in case the original disk is unintentionally altered or
destroyed.

BDOS
Basic Disk Operating System. The CP/M system module that
handles disk operations.

BIOS
Basic Input/Output System. The CP/M system module that
handles communication with the computer’s I/O system.

Block
A basic unit of disk space allocation used by CP/M. Each disk
drive has a fixed block size defined in its disk parameter block
in the BIOS. A block can consist of IK, 2K, 4K, 8K, or 16K
consecutive bytes. Blocks are numbered relative to zero.

Boot
The process of loading an operating system into memory. A
boot (bootstrap loader) program is a small program that auto­
matically executes when the power is applied to the computer.
The boot program loads the rest of the operating system into
memory.

Built-in commands
Commands that reside in the CCP module. They can be used at
any time from CP/M command level.

220

Glossary

Call
See system call.

Calling program
A program or software module (such as the CCP) running in
the TPA that executes a system call.

Card
See printed circuit board.

CCP
Console Command Processor. The CP/M software module that
handles operator communication.

Character position
A location on the screen where one character can be displayed.

Character set
All of the characters that can be displayed and entered from a
terminal.

Command file (.COM file)
An executable program in machine language.

Command line
A command to the computer that consists of the command
word and the arguments or parameters that modify the execu­
tion of the command.

CON:
Mnemonic for the logical console device.

Console
See terminal.

221

SoftCard II

Control character
A character used with another character to perform a special
operation. See “Line Editing Commands” in Chapter 5 for a
list of control characters used with CP/M.

CP/M command level
A mode of operation where the CCP module controls the other
CP/M system module and hence the computer. The command
level mode of operation allows direct commands by the opera­
tor to the operating system. Command level is indicated by the
CP/M A> prompt.

Data file
A file containing information that will be processed by a pro­
gram.

Debug
The process of detecting, locating, and removing errors in a
computer program. Programs such as DDT help perform this
task.

Delimiter
A special character, such as a comma, that separates different
items in a command line.

Destination disk/file
The disk or file that information is to be copied to by the
COPY, PIP, or MFT program.

DOS
The mnemonic name for disk operating system.

Editor
A utility program that creates and modifies text files. It can
also be used to create document files or code for programs.

222

Glossary

Extent
A CP/M measurement unit (usually 16K consecutive bytes) for
storing data in a file.

External terminal
Refers to a terminal connected to an interface board in acces­
sory slot 3 of the Apple //e System. The external terminal
replaces the Apple keyboard and screen monitor as the pri­
mary I/O device for operator input.

FDOS
An arbitrary area of memory consisting of the BDOS and
BIOS software modules.

File specification
Also called filespec. A series of bytes that indicate the name,
type, and location of a disk file.

HEX file
A printable form of a command (machine-language) file.

Instruction set
The list of all instructions which a given microprocessor will
understand and execute.

I/O
Input/output. The transfer of data into and out from a comput­
er and its peripheral devices.

I/O Bus
The communication circuits between the Apple CPU and the
other components of the computer system.

223

SoftCard II

I/O devices
The hardware devices of a computer system used to enter data
into the computer, such as a keyboard; or to accept data from
the computer, such as a printer.

I/O port
A register or set of registers used by the CPU for input or
output of data to and from the I/O system.

I/O system
I/O devices such as printers, terminals, modems, etc., and the
necessary interface circuits that permit communication with a
computer.

Lead-in character
A character used by the computer to denote the beginning of a
special function or routine.

Line editing
In CP/M, the act of editing the current command line.

List device
The I/O device (usually a printer) on which data can be listed
or printed. LST: is the name of the logical list device.

Loader
A utility program that loads a machine-executable program
into memory.

Logical device
The software representation of the actual physical I/O devices
that the computer can communicate with.

LST:
The logical list device name.

224

Glossary

Master disk
The disk that comes with the SoftCard package containing the
CP/M operating system and all the software that is part of the
SoftCard package.

Mode
A certain way of performing tasks. For example, a computer
receives data from an I/O unit in either synchronous or asyn­
chronous mode. In asynchronous mode, data is sent serially
with no synchronization between the I/O unit and the comput­
er. In synchronous mode, data is sent in synchronization with
the computer’s clock frequency.

Module
A set of routines and subroutines organized into a logical unit
and designed to work with other software modules. In CP/M,
there are three software modules: the CCP, BIOS, and BDOS.

MP/M
Multi-Programming Monitor control program. The multi-user
version of CP/M.

Object code
Executable binary code (the output code of an assembler).

Object program
A source program that has been translated into object code
that can be executed or “run” without any additional prepara­
tion.

Option
See argument.

Page
256 consecutive bytes in memory.

225

SoftCard II Programmer’s Manual

Parameter area
The memory area between addresses 000 and 0100. Used to
hold important system parameters.

PATCH
A short section of program code that replaces a section of
another program to correct errors, make changes, or supply
additional data.

Peripheral devices
See I/O devices.

Physical device
A vector location in the BIOS module that points to a specific
assembly language routine for I/O communication.

Port
On a terminal or computer, the physical connection facilities
(i.e., sockets, connectors and cables) to an I/O device.

Printed circuit board
Interface circuits contained on a board that plugs into the
Apple //e accessory slots for interfacing to an I/O device,
additional memory, or a coprocessor.

Program-dependent
Input and output devices whose functions can be defined by a
computer program.

Program level
When the operation of the computer is controlled by a program
(such as GBASIC) running in memory. Any commands given
by the operator are processed by the program instead of by the
operating system’s command module (in CP/M, the CCP). For
example, when GBASIC is running, all commands are pro­
cessed by the BASIC Interpreter. The resulting actions are
passed to the BIOS and BDOS modules by GBASIC. The
program level mode of operation is usually indicated by the
program’s prompt: in the case of GBASIC, the word “Ok.”

226

Glossary

Prompt
Instructions or symbols displayed on the screen to indicate
what the operator should do next.

PUN:
The logical punch device name.

RDR:
The logical reader device name.

Read only (R/O)
An attribute that can be assigned to a disk or disk file. When
assigned to a file or a disk, it does not allow changes to be made
on the file or disk.

Read/write (R/W)
An attribute that can be assigned to a disk or disk file. It
allows both read and write operations.

Record
A group of 128 bytes in a disk file.

Source file
The original file (usually an ASCII text file) in which a pro­
gram is prepared prior to processing by the computer.

Spooling
The process of accumulating printer output in a file while the
printer is busy. The file is printed when the printer becomes
free.

System call
A request from a program or from the CCP to an assembly
language routine that performs a low-level function such as
displaying a character on the screen. In CP/M, the assembly
language routines are stored in the BDOS module and are
identified by numbers.

227

SoftCard II

System tracks
The tracks on the disk reserved for the CP/M system.

Terminal
An input/output device; a terminal usually has a keyboard and
monitor for entering and displaying data.

TPA
Transient Program Area: the area of memory where user pro­
grams are loaded and run.

Track
A separate recording path on a magnetic tape or disk.

Utility program
A program that enables the user to perform certain operations,
such as copying disks.

Vector
A location in memory that “points” to a subroutine or another
memory address.

228

Index

6502 BIOS
BEEP (call 12), 112
call example, 24
calling subroutines, 31
CALLSUB (call 0), 100
CLEAR (call 13), 113
CMDJMP, 95
CMDONE, 95
entry points, 99
FORMAT (call 10), 110
general description, 23
guidelines for use, 23
INITSLOT (call 8), 108
INVERT (call 14), 114
memory map, 97
operation, 94
parameters, 93
READMEM (call 1), 101
READSEC (call 3), 103
READSLOT (call 5), 105
SETPT1 (call 15), 115
SETPT2 (call 16), 116
STATSLOT (call 7), 107
technical description, 95-98
UPDATE (call 11), 111
WRITEMEM (call 2), 102
WRITESEC (call 4), 104
WRITESLOT (call 6), 106
WSTART (call 9), 109

8080A
assembly language, 121
microprocessor, 22

80-column display
keyboard character

redefinition, 218
output, 217
soft switch, 217

Accessory slots, 192

Allocation
blocks, 16
vector, 75

APDOS
command line format, 120
error messages, 198, 199, 201

Apple
80-column operation, 217-218
DOS, 120
European version

differences, x
I/O device protocols, 192
Pascal, 192

ASM
assembler directives, 122
command line format, 121
error messages, 204-207

Assembly language
See also ASM

calling 6502 subroutines, 31
example, 26-30
instruction and register

differences, 22
instruction execution times, 22
programming tools provided, 21
source program, 121
using system calls, 23
Z80/8080 compatibility, 22

AUTORUN
command line format, 123
error messages, 201

BDOS
general description, 4
primitive functions, 7

BEEP (6502 BIOS call 12), 112
BIOS

disk drive byte, 194
filter routines, 182, 191
general description, 4

229

Index

BIOS (continued)
Hardware Screen Function

Table, 165
I/O configuration, 159
I/O Vector Table, 184, 185
keyboard characters

definition, 178
nonstandard devices

or software, 182
screen function

interface, 164, 167, 176
tables, 165

Software Screen Function
Table, 165

substitution routines, 182, 190
user patch areas, 184, 186, 187
vector patches, 183

BOOT command line format, 124
Buffered I/O, 34

Calling 6502 subroutines, 31
CALLSUB (6502 BIOS call 0), 100
CAT

command line format, 125
error messages, 201, 205

CCP (Console Command
Processor), 5

Character I/O functions, 7
CLEAR (6502 BIOS call 13), 113
Close File (system call 16), 64
Closing files, 36
Cold start, 123
Command directory, 117
Compute File Size (system call

35), 85
CON: device, 9, 33, 34, 54
CONFIGIO

adding I/O software to patch
areas, 188

configuring for application
programs, 174

configuring for external
terminal, 168

configuring screen function
interface, 167

initial loading, 162

CONFIGIO (continued)
keyboard character

definition, 178
main selection menu, 162
menu selections, 163
purpose, 161
saving changes, 175
screen function descriptions,

171
screen function interface, 164

within a program, 175-177
Console buffer, 56, 57
CONSOLE device, See CON:

device
Console Input (system call 1), 46
Console Output (system call 2), 47
COPY

command line formats, 126
error messages, 199, 201, 208
switch options, 127

CP/M
allocation vector, 75
APDOS, 120
ASM, 121
BDOS, 4
BIOS, 4, 161
calling from assembly

language program, 25
calling from high-level

language, 31
CAT, 125
CCP, 5, 31
cold start, 123
CON: device, 9, 33, 34, 54
CONSOLE device, See CON:

device
COPY, 126
CRT: device, 10
d:, 129
data disks, 127
DDT, 130, 188
DIR, 134
disk

drive byte, 194
error messages, 199

DUMP, 135
ED, 136

230

Index

CP/M (continued)
ERA, 140
error messages, 195
extents, 16, 17
File Control Block (FCB), 14, 15
file structure, 16
implementation differences, 211
IOBYTE, 9, 12, 13, 35, 54
I/O Vector Table, 184, 185
LIST device, See LST: device
logical device assignments, 9, 35
LPT: device, 11
LST: device, 9, 54
memory organization, 3
nonstandard devices or

software, 182
physical device

assignments, 10, 35, 53
description, 10, 11

PIP, 145
primitive functions, 7, 14
PTP: device, 11
PTR: device, 10
PUNCH device, See PUN:

device
PUN: device, 9, 54
RDR: device, 9,54
READER device, See RDR:

device
records, 16
REN, 149
SAVE, 150
Slots Type Table, 193
SoftCard implementation

differences, 9
STAT, 151
SUBMIT, 154
system

calls, 25, 41
disks, 126, 127
operation, 7
parameters, 5

text editing, 136
TPA, 5
TTY: device, 10

CP/M (continued)
TYPE, 156
UC1: device, 10
ULI: device, 11
UP1: device, 11
UP2: device, 11
URL device, 11
UR2: device, 11
USER, 157
XSUB, 158

Creating files, 35
CRT: device, 10

d: command line format, 129
Datamedia terminals, 164, 169
DDT

command line format, 130
commands, 131, 132
error messages, 202
I/O configuration usage, 188

Debugging, See DDT
Delete File (system call 19), 67
Deleting files, 35
DIR command line format, 134
Direct console access system

calls, 32-34
Direct Console I/O (system call

6), 51
Disk

allocation map, 15
attributes, 152
communication, 14
controllers, 194
data buffer, 14
drive byte, 194
error messages, 195
I/O functions, 7
I/O system calls, 14
system error messages, 195

DMA, 74
Drive code, 15
DUMP

command line format, 135
error messages, 205

231

Index

ED
command line format, 136
editing commands, 137, 138
error messages, 201, 202

Editing, See ED
ERA command line format, 140
Erasing files, 35, 140
Error messages, 195
European Apple, x
Extent number, 15, 16
External terminal, 168

FCB, See File Control Block
File

attributes, 78, 152
closing, 36
creating, 35
deleting, 35
directories, 134
opening, 36
read and write operations, 37
searching for, 37
size display, 153
type, 15

File Control Block, 14, 15
Filename, 15
Filter

I/O routine, 191
routines, 182

FORMAT (6502 BIOS call 10), 110
Format for user written patch

routines, 187

Get Addr Alloc (system call 27), 75
Get Addr Disk Par ms (system

call 31), 79
Get Console Status (system call

11), 58
Get IOBYTE (system call 7), 52
Get Read/Only Vector (system

call 29), 77

Hardware conventions, 192-194
Hardware Screen Function

Table, 165, 167
Hazeltine terminals, 164, 168
High-level languages, 31

INITSLOT (6502 BIOS call 8), 108
Interrupts, 31
INVERT (6502 BIOS call 14), 114
I/O

communication, 33
configuration, 159
device

assignment calls, 36
protocols, 192

software, 186
IOBYTE, 9-13, 35, 54
I/O Vector Table, 184, 185

Keyboard character definition, 178

Lead-in character, 169, 172
LIST device, See LST: device
List Output (system call 5), 50
LOAD

command line format, 141
error messages, 197,199,200,204

Logical device
definition of, 8
device assignment, 32, 33

LPT: device, 11
LST: device, 9, 54

Make File (system call 22), 70
MFT

command line format, 142
error messages, 201

Multiple drive systems, 129

232

Index

Nonstandard
peripherals, 182, 192
software, 182

Notation, ix

Open File (system call 15), 62
Opening and closing files, 36
Overflow byte, 15

Parameter block, 25
PATCH

command line format, 143
error messages, 201, 208

Peripheral boards, 193
Physical device

definition, 10
descriptions, 10, 11
implementation, 12

PIP
command line formats, 145
error messages, 195-199,203-208
parameter summary, 147

Portability, 8
Primitive functions, 7
Printer echo, 46
Print String (system call 9), 55
Programming tools, 21
PTP: device, 11, 33
PTR: device, 10, 33
PUNCH device, See PUN: device
Punch Output (system call 4), 49
PUN: device, 9, 54

Random
access, 38
record number, 15

RDR: device, 9, 54
Read Console Buffer (system call

10), 56
READER device, See RDR: device
Reader Input (system call 10), 48

READMEM (6502 BIOS call
1), 101

Read Random (system call 33), 81
READSEC (6502 BIOS call 3), 103
Read Sequential (system call

20), 68
READSLOT (6502 BIOS call

5), 105
Record

count, 15
definition, 16

REN
command line format, 149
error messages, 201, 202

Rename File (system call 23), 71
Reset Disk System (system call

13), 60
Reset Drive (system call 37), 89
Return Current Disk (system call

25), 73
Return Login Vector (system call

24), 72
Return Version Number (system

call 12), 59

SAVE
command line format, 150
error messages, 205

Screen function
definition for undefined

terminals, 164
descriptions, 165, 166
interface,

filter routines, 182
installing nonstandard

software, 182
I/O Vector Table, 184, 185
keyboard characters

definition, 178
nonstandard devices, 182,192
saving changes, 175
screen function memory

addresses, 176

233

Index

Screen function (continued)
interface (continued)

substitution routines, 182
user patch areas, 184,186,187
vector patches, 183

Search for First (system call
17) , 65

Search for Next (system call
18) , 66

Searching for a file, 37
Select Disk (system call 14), 61
Sequential access, 37
Set DMA Address (system call

26), 39, 74
Set File Attributes (system call

30), 78
Set/Get User Code (system call

32), 80
Set IOBYTE (system call 8), 53
SETPT1 (6502 BIOS call 15), 115
SETPT2 (6502 BIOS call 16), 116
Set Random Record (system call

36), 87
Single-drive systems, 127, 142
Single file copy program, 142
Slots Type Table, 193-194
SoftCard

assembly language
programming, 21

AUTORUN utility program, 123
BOOT utility program, 124
CONFIGIO utility program,

161, 179
CP/M

enhancements, 211
implementation differences,

211
PATCH utility program, 143
programming tools provided, 21
unique features, 212

Software Screen Function Table,
165, 167

Soroc terminals, 164, 168
Startup disks, 123

STAT
attribute settings, 152
command line formats, 151
error messages, 195, 201, 203,

207, 208
STATSLOT (6502 BIOS call 7), 107
SUBMIT

command line format, 154
error messages, 197, 198, 200,

205
Substitution routines, 182, 190
System

calls, See System calls
disk, 126
parameters, 5

System calls
buffered I/O, 34
calling from a high-level

language, 31
calling from an assembly

language program, 25
call numbers, 43
Close File (16), 64
Compute File Size (35), 85
Console calls, 33, 34
Console Input (1), 46
Console Output (2), 47
creating files, 35
definition, 8
Delete File (19), 67
deleting files, 35
direct console device calls, 32-34
Direct Console I/O (6), 51
disk I/O calls, 14
file read and write operations, 37
general description, 8
Get Addr Alloc (27), 75
Get Addr Disk Parms (31), 79
Get Console Status (11), 58
Get IOBYTE (7), 52
Get Read/Only Vector (29), 77
guidelines on use, 23
I/O device

assignment calls, 35
calls, 32

234

Index

System calls (continued)
List Output (5), 50
Make File (22), 70
Open File (15), 62
opening and closing files, 36
parameter descriptions, 44
Print String (9), 55
program example, 26
Punch Output (4), 49
random access, 38
Read Console Buffer (10), 56
Reader Input (3), 48
Read Random (33), 81
Read Sequential (20), 68
Rename File (23), 71
Reset Disk System (13), 60
Reset Drive (37), 89
Return Current Disk (25), 73
returning control to the CCP, 31
Return Login Vector (24), 72
Return Version Number (12), 59
Search for First (17), 65
Search for Next (18), 66
searching for a file, 37
Select Disk (14), 61
sequential access, 37
Set DMA Address (26), 39, 74
Set File Attributes (30), 78
Set/Get User Code (32), 80
Set IOBYTE (8), 53
Set Random Record (36), 87
System Reset (0), 45
Write Protect Disk (28), 76
Write Random (34), 83
Write Random With Zero Fill

(40), 90
Write Sequential (21), 69

System Reset (system call 0), 45

Text
editor, 136
pages, 213

TPA (Transient Program Area), 5
TTY: device, 10, 33
TYPE

command line format, 156
error messages, 206

UC1: device, 10
ULI: device, 11
UP1: device, 11
UP2: device, 11
UPDATE (6502 BIOS call 11), 111
UR1: device, 11
UR2: device, 11
USER

command line format, 157
error messages, 204

User
I/O software, 163, 182
patch areas, 184

Utility programs, 119

Vector patches, 183, 184
Video display

boards (80-column), 182,217,218
Warm start, 45
Word processor, 136
WRITEMEM (6502 call 2), 102
Write Protect Disk (system call

28), 76
Write Random (system call 34), 83
Write Random With Zero Fill

(system call 40), 90
WRITESEC (6502 BIOS call

4), 104
Write Sequential (system call

21), 69
WRITESLOT (6502 BIOS call

6), 106
WSTART (6502 BIOS call 9), 109

XSUB command line format, 158

Z80 microprocessor, 22, 212

235

MICROSOFT
10700 Northup Way, Bellevue, WA 98004

Software
Problem Report

Name

\ Street
City State Zip

Phone Date

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

 Software Problem

 Software Enhancement

Software Description

 Documentation Problem
(Document #)

Other

Microsoft Product

Rev. Registration# _

Operating System

Rev. Supplier

Other Software Used

Rev. Supplier

Hardware Description

Manufacturer CPU Memory

Disk Size" Density: Sides:

Single Single

Double Double

KB

Peripherals

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

Microsoft Use Only
' • J • . • '■•■■■■ ■■ ; ;

Tech Support Date Received

Routing Code Date Resolved

Report Number

Action Taken:

DIGITAL RESEARCH LICENSE
INFORMATION

CAREFULLY READ ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT PRIOR TO
BREAKING THE DISKETTE SEAL BREAKING THE SEAL INDICATES YOUR ACCEPTANCE OF THESE
TERMS AND CONDITIONS.

IMPORTANT: Our license with Digital Research for the CP/M r Operating System requiresthat
each purchaser of the SoftCard™ with CP/M register with MicrosoffR Corporation so that records can be
maintained of all CP/M owners. This requirement is made by Digital Research, not by Microsoft, and a post­
card is enclosed for reply. THE SERIAL NUMBER ON THE CARD IS THE NUMBER STAMPED ON THE DISK
LABELS.

SOFTWARE LICENSE AGREEMENT
IMPORTANT: All Digital Research programs are sold only on the condition that the purchaser

agrees to the following license. READ THIS LICENSE CAREFULLY. If you do not agree to the terms contained
in this license, return the packaged diskette UNOPENED to your distributor and your purchase price will be
refunded. If you agree to the terms contained in this license, fill out the REGISTRATION information and
RETURN by mail to Microsoft Corporation.

DIGITAL RESEARCH agrees to grant and the Customer agrees to accept on the following terms
and conditions nontransferable and nonexclusive license to use the software program(s) (Licensed
Programs) herein delivered with this agreement.

1. TERM: This agreement is effective from the date of receipt of the above-referenced program(s)
and shall remain in force until terminated by the Customer upon one month’s prior written notice, or by Digital
Research as provided below.

Any license under this Agreement may be discontinued by the Customer at any time upon one
month’s prior written notice. Digital Research may discontinue any license or terminate this Agreement if the
Customer fails to cornply with any of the terms and conditions of this Agreement.

2. LICENSE: Each program license granted under this Agreement authorizes the Customer to use
the Licensed Program in any machine readable form on any single computer system (referred to as System).
A separate license is required for each System on which the Licensed Program will be used.

This Agreement and any of the licenses, programs or materials to which it applies may not be
assigned, sublicensed or otherwise transferred by the Customer without prior written consent from Digital
Research. No right to print or copy, in whole or in part, the Licensed Programs is granted except as
hereinafter expressly provided.

3. PERMISSION TO COPY OR MODIFY LICENSED PROGRAMS: The Customer shall not copy, in
whole or in part, any Licensed Programs which are provided by Digital Research in printed form under this
Agreement. Additional copies of printed materials may be acquired from Digital Research.

Any Licensed Programs which are provided by Digital Research in machine readable form may be
copied, in whole or in part, in printed or machine readable form in sufficient number for use by the Customer
with the designated System, to understand the contents of such machine readable material, to modify the
Licensed Program as provided below, for back-up purposes, OR FOR ARCHIVE PURPOSES, provided,
however, that no more than five (5) printed copies will be in existence under any license at any one time
without prior written consent from Digital Research. The Customer agrees to maintain appropriate records of
the number and location of all such copies of Licensed Programs. The original, and any copies of the
Licensed Programs, in whole or in part, which are made by the Customer shall be the property of Digital
Research. This does not imply, of course, that Digital Research owns the media on which the Licensed
Programs are recorded. The Customer may modify any machine readable form of the Licensed Programs for
his own use and merge it into other program material to form an updated work, provided that, upon
discontinuance of the license for such Licensed Program, THE LICENSED PROGRAM SUPPLIED BY DIGITAL
RESEARCH WILL BE COMPLETELY REMOVED FROM THE UPDATED WORK. ANY PORTION OF THE
LICENSED PROGRAM INCLUDED IN AN UPDATED WORK SHALL BE USED ONLY IF ON THE DESIGNATED
SYSTEM AND SHALL REMAIN SUBJECT TO ALL OTHER TERMS OF THIS AGREEMENT.

The Customer agrees to reproduce and include the copyright notice of Digital Research on all
copies, in whole or in part, in any form, including partial copies of modifications, of Licensed Programs made
hereunder.

4. PROTECTION AND SECURITY: The Customer agrees not to provide or otherwise make
available any Licensed Program including but not limited to program listings, object code and source code,
in any form, to any person other than Customer or Digital Research employees, without prior written consent
from Digital Research, except with the Customer’s permission for purposes specifically related to the
Customer’s use of the Licensed Program.

5. DISCONTINUANCE: Within one month after the date of discontinuance of any license under this
Agreement, the Customer will furnish Digital Research a certificate certifying that through his best effort, and
to the best of his knowledge, the original and all copies, in whole or in part, in ANY form, including partial
copies in modifications, of the Licensed Program received from Digital Research or made in connection with
such license have been destroyed, except that, upon prior written authorization from Digital Research, the
Customer may retain a copy for archive purposes.

6. DISCLAIMER OF WARRANTY: Digital Research makes no warranties with respect to the
Licensed Programs. The sole obligation of Digital Research shall be to make available all published
modifications or updates made by Digital Research to Licensed Programs which are published within one
(1) year from date of purchase, provided Customer has returned the Registration Card delivered with the
Licensed Program.

7. LIMITATION OF LIABILITY: THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL DIGITAL
RESEARCH BE LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF DIGITAL RESEARCH HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

8. GENERAL: If any of the provisions, or portions thereof, of this Agreement are invalid under any
applicable statute or rule of law, they are to that extent to be deemed omitted.

